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Preface

This text deals with three basic techniques for constructing models of
Zermelo-Fraenkel set theory: relative constructibility, Cohen’s forcing, and
Scott-Solovay’s method of Boolean valued models. Our main concern will be
the development of a unified theory that encompasses these techniques in one
comprehensive framework. Consequently we will focus on certain funda-
mental and intrinsic relations between these methods of model construction.
Extensive applications will not be treated here.

This text is a continuation of our book, ‘ Introduction to Axiomatic Set
Theory,” Springer-Verlag, 1971 ; indeed the two texts were originally planned
as a single volume. The content of this volume is essentially that of a course
taught by the first author at the University of lilinois in the spring of 1969.
From the first author’s lectures, a first draft was prepared by Klaus Gloede
with the assistance of Donald Pelletier and the second author. This draft was
then revised by the first author assisted by Hisao Tanaka.

The introductory material was prepared by the second author who was also
responsible for the general style of exposition throughout the text. We have
included in the introductory material all the results from Boolean algebra and
topology that we need. When notation from our first volume is introduced, it
is accompanied with a definition, usually in a footnote. Consequently a
reader who is familiar with elementary set theory will find this text quite
self-contained.

We again express our deep appreciation to Klaus Gloede and Hisao
Tanaka for their interest, encouragement, and hours of patient hard work in
making this volume a reality. We also thank our typist, Mrs. Carolyn
Bloemker, for her care and concern in typing the final manuscript.

Urbana, Illinois G. Takeuti
March 23, 1972 W. M. Zaring
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Introduction

In this book, we present a useful technique for constructing models of
Zermelo-Fraenkel set theory. Using the notion of Boolean valued relative
constructibility, we will develop a theory of model construction. One feature
of this theory is that it establishes a relationship between Cohen’s method of
forcing and Scott-Solovay’s method of Boolean valued models.

The key to this theory is found in a rather simple correspondence between
partial oyder structures and complete Boolean algebras. This correspondence
is established from two basic facts; first, the regular open sets of any topological
space form a complete Boolean algebra; and second, every Boolean algebra
has a natural order. With each partial order structure P, we associate the
complete Boolean algebra of regular open sets determined by the order
topology on P. With each Boolean algebra B, we associate the partial order
structure whose universe is that of B minus the zero element and whose
order is the natural order on B.

If B, is a complete Boolean algebra, if P is the associated partial order
structure for By, and if B, is the associated Boolean algebra for P, then it is
not difficult to show that B, is isomorphic to B, (See Theorem 1.40). This
establishes a kind of duality between partial order structures and complete
Boolean algebras; a duality that relates partial order structures, which have
broad and flexible applications, to the very beautiful theory of Boolean valued
models. It is this duality that provides a connecting link between the theory
of forcing and the theory of Boolean valued models.

Numerous background results are needed for our general theory. Many
of those results are well known and can be found in standard textbooks.
However, to assist the reader who may not know ali that we require, we
devote §1 to a development of those properties of Boolean algebras, partial
order structures, and topologies that will be needed later.

Throughout this text, we will use the following variable conventions.
Lower case letters a, b, ¢,... are used only as set variables. Capital letters
A, B, C, ... will be used both as set variables and as class variables; in any
given context, capital letters should be assumed to be set variables unless we
specifically state otherwise.



1. Boolean Algebra

In preparation for later work, we begin with a review of the elementary
properties of Boolean algebras.

Definition 1.1. A structure (B, +, -, =, 0, 1> is a Boolean algebra with
universe B iff 0 and 1 are two (distinct) elements of B; + and - are binary
operations on B; ~ is a unary operation on B; and Va, b, c € B.

l.a+b=>b+a ab = ba Commutative Laws.
2.a+ b+ c)y=(a+ b+ c albc) = (ab)c Associative Laws.
3. a+ bc=(a+ b)a+ ¢ a(b + ¢) = ab + ac Distributive Laws.
4.0+a=a la =a Identity Laws.
S.a+ "a=1 a(Ca) =10 Complementation Laws.

Remark. There are alternative definitions of a Boolean algebra. The
reader might find it instructive to compare the definitions given in the
standard texts.

Examples. 1. If a # 0 then (Z(a)*, U, N, 7,0, a)> is a Boolean algebra.
If @ = | we have a very special 2-element Boolean algebra that we denote by
2. Every 2-element Boolean algebra is isomorphic to 2.

2.1fa# 0,b < Pa),0eb,aeh, and if b is closed under set union,
intersection, and relative complement then <{b, U, N, =, 0, a> is a Boolean
algebra. Such an algebra, i.e., one whose elements are sets and whose
operations are union, intersection, and relative complement, we will call a
natural Boolean algebra.

3. If for a first order logic whose language contains at least one predicate
symbol we define an equivalence relation between sentences by

¢~y iff Flp ]
then the collection of equivalence classes is the universe for a Boolean algebra
called the Lindenbaum-Tarski algebra. The operations are logical disjunction,
conjunction, negation; v, A, —, with the distinguished elements being truth
and falsehood, i.e., 1 is the equivalence class of theorems and 0 is the equiva-
lence class of contradictions.

Exercises. Prove the following for a Boolean algebra (B, +, -, =, 0, 1>:

1. Va)[a+ b =a]l—b =0.
2. (Va)[ab = a]—b = 1.

* Pa) = {x|x<al.



Notation: We will use the symbols B, B, B, as variables on Boolean
algebras. |B| is the universe of the Boolean algebra B. When in a given con-
text the symbols 0 and 1 appear it will be understood that they are the
distinguished elements of whatever Boolean algebra is under discussion. If
there are two or more Boolean algebras in the same discussion we will write
0g, 15, O, 1. to differentiate between the distinguished elements of the
different spaces. If no confusion is likely the subscripts will be dropped. The
same convention will be used in denoting Boolean operations.

Theorem 1.2, If (B, +, -, 7, 0,1) is a Boolean algebra then Va,be B
l.a+a=a aa =a Idempotent Laws.

2.a+ab=a al@+ b) =a Absorption Laws.

Proof.

lLata=@+al=@+aa+ a)=a+a(Ca)=a+ 0 = a.
2.a+ab=al+ab=a(l+b)y=a("b+b+b)y=a("b+b)=al=a.

The proofs of the multiplicative properties are left to the reader.
Theorem 1.3. If (B, +, -, 7, 0, 1> is a Boolean algebra then

I.  0=1,"1=0.
2. VaeB)[l1+a=1Ah0a=0].

Proof.

I.  0=0+ "0=1.
22.14a=(Ca+a)+a="a+@+a)="a+a=1

The remaining proofs are left to the reader.
Theorem 1.4. If (B, +, -, =, 0, 1> is a Boolean algebra then Va,be B

l.a+b=1Aab=0—b= "a.
2. (Ca) =a.
3. (a+ b)) =(Ca)(b), (ab) = "a+ ~b.
4. ab=a<a+ b =0
Proof.
1. b = b1 =bla + ~a) = ba + b("a)
=0+ b("a) = a("a) + b("a)
=(a+ b)("a) =1("a) = ~a.
2. Since "a + a = 1 and ("a@)a = 0, we have from 1, ~("a) = a.
3@+ b)+(a(b)y=a+ b+ "a)b+ b
=a+ b+ a)=1+b=1
la("a) + (" a)]("b)
=b("a)("b) = 0.
Hence by 1, ~(a + &) = (Ta)("b).
4. Ifab =athena+b=ab+b=>b.1fa+ b =bthenab=a(a + b) = a.
The proof of the other half of 3 we leave as an exercise for the reader.

4
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Definition 1.5. 1f (B, +, -, =, 0, 1> is a Boolean algebra then Va, b € B

1. (@ — b) £ a(~b).
2.(a=b)= "a+b.

3. (a <= b) = (a= b)b = a).
4. (@< b)ySab=a

Remark. We will refer to < as the natural order on the Boolean algebra.

e lle

Theorem 1.6. If (B, +, -, ~,0,1> is a Boolean algebra with natural
order < then Va,b,ce B

l. a < a.

2Z.as<bnb<a—>a=0b

J.a<sbAab<sc—ac<ec

Proof.

1. aa = a.

2. a =ab = ba=>b.

3. Ifa=ab A b = bcthen a = ab = a(bc) = (ab)c = ac.

Theorem 1.7. If (B, +, -, ,0,1> is a Boolean algebra with natural
order < thenVa,be B

l.a<b< "b< "a

2.asb—-a—-b=0.

J.ag<be(a=b =1

Proof. 1. 1f a < b then a = ab. Therefore ~a = ~(ab) = ~a + ~b.
Then by Theorem 1.4.4(~b)("a) = ~b,i.e., b < ~a.Converselyif b < ~athen

“(Ta) £ “("b) ie., ac<b.

2. If a < b then a = ab. Therefore a(=b) = (ab)(~b) = 0. Conversely if
a(~b) = O0thena =al = a(b + ~b) = ab + a("b) = abie.,a < b.

3. If a< b then a =ab and ~a = ~a + ~b. Therefore (@ = b) =
a+b=((a+ b +b="a+1=1, Conversely if (a =5) =1 then
a=al=a(Ca+b)=abie,a<b

Theorem 1.8. If (B, +, -, ~,0,1> is a Boolean algebra with natural
order < then Va, b,c,de B

1.0<b<1
2.[a<blAafcsdl—lac s bd] Ala+c<b+d).

Proof. 1. 0=10b A b = b1.
2. If a = ab and ¢ = cd then (ac)(bd) = (ab)(cd) = ac and

(a+c)b+d)y=ab+ad+cb+cd=a+ad+cb+c=a+c
Exercises. Prove the following for a Boolean algebra (B, +, -, =, 0, 1>:

l.a< "b<ab=0.
2.a<(a+ b Ab<(a+b).



3.ab<anab<hb.
df[a<cnrb<cl—(a+b)<ec
5.fc<aAnc<bl—c<ab

Definition 1.9. 1f (B, +, -, 7,0, 1> is a Boolean algebra with natural
order <,if A < Band b € B then

1.b=> a& (Vae A)la < b] A (Vb € B)[(Vae Aa < b'] —b < b'].

acA

2.b=[]a® (Vac b < al A (V' € B)[(Vae A

aeA

IA

al - b’ < b).
Definition 1.10. A Boolean algebra {B, +, -, =, 0, 1> is complete iff

(VA gB)(Hb,b’eB)[bz >anb =]]al|

ac4d aed

Example. If a # 0 then the Boolean algebra (#(a), U, N, =, 0, a> is
complete. Indeed if A = #(a) and A # 0, then

2bh=UJ@rTTo=) (.

beA beA
Theorem 1.11. If (B, +, -, =, 0,1> is a Boolean algebra and 4 < B
then
1. 'za = I—I ("a).
acA aeA
2.7 [[a= 2 (a.
acAd acA

Proof. 1. Since (Vb e A)[b < >4 a] we have ~S,.,a < ~b and hence

‘Za < H(‘a).

acd acA

Also (Vb € A)[[Tsea (Ta) < ~b]. Therefore b < ~[1,ca ("a), hence

2.as]Ca

acA acA

H(‘a) < ‘Z a.

aeA acA

2. Left to the reader.

Theorem 1.12. If <(B, +, -, =, 0, 1> is a Boolean algebra, if b, ce B,
A = B, and
b = Z a

then



Proof. If ae A then by Definition 1.9, a < b and hence ca < ¢b. If

for each ae A, ca < d thensincea= ("¢ +cJa= "ca+ca< c+dit
follows from Definition 1.9 that b < ~¢ + d. Hence ¢b < d and again from
Definition 1.9 2,4 ca = ¢b.

Remark. Having now reviewed the basic properties of Boolean algebras
we turn to the problem of characterizing complete Boolean algebras. As a
first step in this direction we will show that the collection of regular open
sets of a topological space is the universe of a Boolean algebra that is almost
a natural algebra.

Definition 1.13.  The structure (X, T)> is a topological space iff X # O,

. T #X)A0eT A XeT.
2. AcT—\()eT.
3. (WN,N'eTN[NNN"eT].

T is a topology on X iff (X, T is a topological space. Ifae Xand Ne T
then N is a neighborhood of « iff ae N. If N is a neighborhood of a we
write N(a).

Theorem 1.14. 2(X) is a topology on X.

Proof. Left to the reader.

Definition 1.15. T is the discrete topology on X iff T = 2(X).
Definition 1.16. If T is a topology on X and A = X then

1. A° 2 {xe A | GN(X)[N(x) € A]}.

2. A= 2 {xe X | (YN(X))[N(x) N 4 # 0]}.

Theorem 1.17. If 7 is a topology on X and 4 < X then A°<T.
Proof. If B={NeT|N < A} then B < T. Furthermore

xe A« 3IN(x) < 4
<~ IN(x)e B
~x el J(B).
Then A° = | (B)eT.
Definition 1.18. T’ is a base for the topology 7 on X iff

1.T <T.
2. (VA< X)[A = A°—=@B< TH[4 = B)]]

Theorem 1.19. If X # 0, if T’ is a collection of subsets of X with the
properties

1. Vae X)@A T )ac A].
2. Wae X)(VA, A, eTHlac A, N Ay —
(F4,eTHlac A; A Ag S A; O Al

Then 77 is a base for a topology on X.



Proof. fT={B< X|3AC<= T)B=J(C)}then0 =1J(0)eT and
from property 1, X = {J(7T’) e T.This establishes property | of Definition 1.13.
To prove 2 of Definition 1.13 we wish to show that | (§) € T whenever
S < T. From the definition of T it is clear that if S < T thenVBe S,3C < T’

B =1 ().

If
Cy={AdeT' | A< B}
then
B=U(CB)
and
UJB={Ju(Cy
BeS Bes

-U(Je):
BeS
Since Upes C5 = T, U (S)€eT.
If B;, B, € Tthen3C,, C, = T’

By = J(C) A By = J(Cy).

(Y4l ()

A1eCy AgeCq

U (41 N 43)

A1eCy
AgeCqg

= U Asg (By 2).
A1€Cy
AgeCqy
A3z S A1NAg

Then B; N B, € T; hence T is a topology on X. Clearly T’ is a base for 7.

Definition 1.20. 1If T is a topology on X and 4 < X then
. Aisopeniff 4 = A°.

. A is regular openiff 4 = 4~°.

.Adisclosediff 4 = A~.

. A is clopen iff 4 is both open and closed.

. Aisdensein Xiff A~ = X.

Therefore

B, N B,

It

wn W~

Remark. From Theorem 1.17 we see that if T is a topology on X then T
is the collection of open sets in that topology. A base for a topology is simply
a collection of open sets from which all other open sets can be generated
by unions.

For the set of real numbers R the intervals (a, b) 4 {xeR|a < x < b}
form a base for what is called the natural topology on R. In this topology
(0, 1), and indeed every interval (a, b), is not only open but regular open.

l[a,b] £ {xeR|a < x < b} = (a,b)". Thus for example [l,2] is closed.

8



Furthermore (0, 1) U (1, 2) is open but not regular open. The set of all

rationals is dense in R. In this topology there are exactly two clopen sets
0 and R.

Theorem 1.21. 1. In any topology on X both 0 and X are clopen.
2. In the discrete topology on X every set is clopen and the collection of
singleton sets is a base.

Proof. Left to the reader.

Remark. The next few theorems deal with properties that are true in
every topological space (X, T. In discussing properties that depend upon X
but are independent of the topology 7, it is conventional to suppress reference
to T and to speak simply of a topological space X. Hereafter we will use this
convention.

Theorem 1.22. If A < X and if B < X then

1. A= A< 4-.

2. A% = A% A A=~ = A4~

3.A<c B—-+A°< B°A A~ < B~.

4. (X —A) =X —-—A"rA (X - A)P° =X - A4".

Proof.

. xeA°—3IN(x) < 4

—x€eA
xe€A—-(YNX)[Nx)N A4 # 0]

—~x€eA".

2. xe A°—>3IN(x)c 4
— ANG)Dx e (N(x) N 4A°) A (N(x) " A% eT

A (N(x) N A% < A°]

—3IN(x) < A°
—x € A%,

Since by 1, 4°° = A° we conclude that A°° = A°.

xeA " = (VNX)IN(x)N A~ # 0]
= (VN@)@Ep)y e N(x) A yeA~]
— (YNE))ENAN NIV () N4 # 0 A N'(y) = N(x)]
— (VNN (x) N 4 # 0]
—X€EA".

Since by 1, 4= = A~ ~ it follows that A=~ = 4~
3. If A < Bthen

xeA°—=3IN(x) <= 4
—dN(x) < B
—x€B°

xeA™ = (VNX)HINx) N A # 0]
— (YN(x)[N(x) N B # 0]
—x€eB~.



4. xe(X — A)” = (YNX)[N(x) N (X — A) # 0]

< (YN(x))[N(x) & A]
<‘—>JC¢A0
~<xe X — A°

xe(X — A <-3INKx) <= (X — A)
< (ANX)HIN(x) N 4 = 0]
> X¢A”
+xeX — A-.

Theorem 1.23. If A < X and if B < X then

1. A regular open implies 4 open.

2. A is open iff X — A is closed.

3. Aisclosed iff X — A is open.

4. A < Band A4 dense in X implies B dense in X.

Proof.
1. If A = A %then A® = 4~ = 470 = 4.
2. A=A (X — 4) = (X — 49
(X —A)=(X - A)".
3. Left to the reader.

4. A< B—+>A" < B~. But A dense in X implies A~ = X. Hence
B~ = X. :

Theorem 1.24. If C is a clopen set in the topological space X and
B~ — B% < Cthen B~ — Cis clopen.
Proof. If xe B~ — C thensince B~ — B°< C
xeB° A x¢C.

Since C is closed X — C is open. Therefore B N (X — C) is open. Then
xeB°N (X - C)impliesIN(x) = B°Nn(X - C)= B~ — C.ThusB- - C
is open.
If (YNX)[N(x) N (B~ — C) # 0] then
(YNODINx)N B~ 20 A Nx)n (X — C) # 0].
Since B~ isclosed x € B7;since Cis open X — Cisclosed, hence xe X — C.
Therefore xe B~ — C and B~ — C is closed.

Theorem 1.25. If Cis a clopen set in the topological space X then X — C
1s clopen.

Theorem 1.26. The clopen sets of a topological space form a natural
Boolean algebra.

Proof. Left to the reader.

Theorem 1.27. If A = Xand B < X then
1.(AUB)™"=A"UB~, (AN B)® = A° N B°,
2.(ANB)~< A" NnB~, AU B° < (4 U B)°.

10



Proof. 1. Since A< AU Band BS AU B we have 4~ < (4 U B)~
and B~ < (4 U B)~. Therefore (4~ U B~) < (AU B)".
xe(AUB)~ Ax¢A™
— (YNG)NG) N (AU B) # 0] A GN'())IN'(x) N 4 = 0]
— (YNEO)EBN' DN N N(xX)NA=0A
(N(x) " N'(x)) " (4 U B) # 0]
— (YN(x))[N(x) N B # 0]
—~X€B".

Thus (AU B)" < (A~ v B~ )and hence (AU B)” = A~ v B~
xe(A° N B <« [AN(x) < A] A [AN'(x) € B]

<>AN(x) € AN B
<~ x€ (4 N B)°

2. Left to the reader.

Theorem 1.28. If A = X, and if B = X, then

1.A=A"> A< A~°

2. (A79 7%= 4~°,

3. (A°N"B )= (AN B)".

4, (AU B °)" %< (4~ U B9

Proof. 1. 1f A = A°thensince 4 < A~ we have 4 = A° < A~°

2. Since A7°c A~ and A=~ = A~ we have (A7) °< A~"% = A~C
Since A~° is open we have from 1, 4% < (47°)~° Therefore
(47°)=0° = 4-0,

3. xe(A° N B™) — [(AN'(x) = A) A (YN@)[N(x) N B # 0]
— ANCONN )N (x) NN (x)) N (4 N B) # 0]
— (YNGO))IN(E) N AN B # 0]

—>xe(AnN B)".
4. X - (A" UBY=(X—-A4)n(X - B9
=(X—-A4A)N(X - B (By 2)
cl(X-47)n(X—-B7°)]" (By3)

[X = (4~ B~
X — (A4~ U B-°-)
X —(4v B 99
Therefore (A U B=°)"% < (4~ U B™O).

Theorem 1.29. If A € X and if B < X then

1. A and B are regular open implies 4 N B is regular open.
2. A and B are open impliess [A N B =0« A"%°"n B"°=0].

il

Proof. 1. If Aand Bareregular openthensinceANB< A ANANBS B
we have
(ANB) = A°=4
(ANB)y°< B %= B
11



Therefore (4 N B)~° < A N B. But also
(ANB) = (4N B% = (4N B)Y° < (4N B)~".

Therefore (4 N B) = (4 N B)~°,
2. If 4 =4%°and B= B°then 4 = A°< A ° A B= B°< B-° Thus

(AN B)< (A7 °N B9,

Consequently (47° N B~% = 0 implies 4 N B = 0.
Conversely

ANB=0—-A< X - B
—A-" < X - B
A%< (X — B)Y
- A% X - B°°
—A°NB° =0,

In

(X — B)°~

Theorem 1.30. The class F of all regular open sets of a nonempty
topological space X is a complete Boolean algebra with operations 4 + B =
AV B)™° AB 24nB 42 (X — A)°, and distinguished elements
0=0and12 x.

Proof. Clearly addition as defined is a binary operation on regular open
sets. From Theorem 1.29 multiplication as defined is a binary operation on
regular open sets.

If A4 is regular open then

CAP=(X-A)"°=(X—-4"9 = -4

Thus complementation, as defined, is a unary operation on regular open sets.
Both 0 and 1 are regular open and since X # O we have 0 # 1. If 4, B are
regular open sets then

A+ B=(AUB)°=(BUA) =B+ 4
AB=ANB=BnNnA=BA

Thus addition and multiplication are commutative. For the proof of associa-
tivity we have from Theorems 1.22 and 1.27

(AUuB)°c(AUB)- =4 UB-
A°PUB (4" UB ) =(4uUB"

Thus if 4, B, and C are regular open sets

A+B)+C=[4uB)°uClc[(4-vuB)HuC-]°
=[(4uB)uUC]?®
=[A4°UBYUC]°c[4uB)UuCT?®
=(4+ B)+ C.

12



Thus

A+B+C=[A4uvBuC]?®
= [(BU C)uU A4]°
=B+C)+ 4
=A+ B+ C).

Consequently addition is associative. Since multiplication is set intersection
it too is associative.

For the proof of the distributive law we use both Theorem 1.27 and
Theorem 1.28.

A+ (BC)=[AU(BNC)]°
=[AUuBNAUO)] °c(AUB)°NnAUVC)°
= (4 + B)(4 + O).

(4 + B4 + C)
=(AUB)"Nn(4uC)°
=[(AUB 9 °N(AUC )< [A-UBYNMA- Vv C9]°
=[A-uUBNnO)] °cs4a-uBnNnC)]°
=[Au(BNC) %= 4 + BC.
AB+ C)=ANn(BUC)™°
=A°N(BUC) < [A°n(BUC) P [An(BU(C)]°
‘ =[(ANnBuU(AnNC)]°=A4B + AC.
AB+ AC=[ANnBuAdn(C)?°
=[ANBUC)] <4 °Nn(BUC)?=A4(B+ C).
0+A=0UVA)"=A4"°%= 4
14 = XN A= A.
A+ A" =[AV(X — A °=[AVu (X — 47)]°
=A " UX —-A4) =4 " vX -4
= X%°=X.
ACA =ANn (X — A =A4An(X —47)=0.

Thus the collection F of regular open sets forms a Boolean aigebra. To
prove that this algebra is complete we note, from the definition of multiplica-
tion and the definition of the natural order < for a Boolean algebra, that for
A, BeF

AB
B.

A< B+ A
<~ A

n

If H is a set of regular open sets then [|J (H)]° is regular open. Also
AeH—>4c< | H)

A-° < [U (H)]_O.

Furthermore if Be F and (VA € H)[4 < B] then | (H) € B and

el

— A

Il

In

B-° = B.

13



Thus

>a=|Uan|™

AeH

Similarly [(") (H)]~° is regular open and
AeH—(\(H)<c 4
-0

— [ﬂ (H)] S A0 =A4.

If Be Fand (VA4 € H)[B < A] then B = (N (H) and hence
-0
B=B"¢c [ﬂ (H)l

Therefore
[T4-|Nan|”

AeH

Remark. We have now shown that the regular open sets in any given
topological space form a complete Boolean algebra. We next wish to show
that every complete Boolean algebra is isomorphic to the complete Boolean
algebra of regular open sets of some topological space. This topological
space is determined by the given Boolean algebra in a way we must now make
clear. The key is certain properties of partial orderings.

Definition 1.31. The structure (P, <> is a partial order structure iff <
is a subset of P x Pand Vx,yeP

. x < x.
2. XS YyANYySX—>X=).
3 x<yAy<z->x<cz

The relation < is a partial ordering of P iff <P, <) is a partial order
structure.

Definition 1.32. If < is a partial ordering of P then
[x] 2 {yeP|y < x}, x€P.

Theorem 1.33. If < is a partial ordering of P then 7’ £ {[x]| xeP}is
a base for a topology on P. Furthermore if 4 = P then in this topology

x€ A° < [x] = A.

xed- < [x]Nn A0

xeA %< (Vy < x)[[y] n 4 # 0].

xe(P — A)° < (Vy < x)[y ¢ 4].

A is dense in P iff (Vx e P)[[x] N 4 # 0O].

x is a <-minimal element of P iff xe P A [x] = {x}.

S

14



Proof. (¥xeP)[xe[x]eT].
(Vx € PYV[Y), [21e T)[x € [y] N [2] = x & [x] < [y] N [2]].

Therefore, by Theorem 1.19, 7" is a base for a topology on P. Furthermore
if A € P then in this topology

. xeA® < AlyDixe [¥] = 4]
<~ [x] € A.
x€A” = (VyDlxeyl =[N A4+ 0]
<~ [x]N A4 #O0.
xeEA ' [x]c A-
< (Yy < DN 4 # 0]
4. xe(P— A <—[x]csP -4
< (Vy < x)[y ¢ Al
5. AisdenseinP<> A~ =P
<~ (VxeP)[xe A ]
<~ (VxeP)[[x]n A # 0].

—

N

w

6. The proof is left to the reader.

Remark. 1If (P, <) is a partial order structure then the topology with
base {[x] | x € P} we call the topology on P induced by the order relation <
or the order topology on P. Hereafter when we speak of an open subset of a
partially ordered set P we will mean open in the topology on P induced by the
partial ordering.

Theorem 1.34. If (P, <) is a partial order structure and 4 is a collection
of open subsets of P then

(a

acA

is open.
Proof.
pe()a— (Vae A)lpeadl

a€d

— (Vae A)[[p] € a] since a is open

—[pls)a

acd
Remark. It then follows, that for a Boolean algebra of regular open sets
of a partial order structure, infimum coincides with set intersection:

Theorem 1.35. [f (P, <) is a partial order structure and A is a collection
of regular open subsets of P then

Hazﬂa.

aeA acAd

Proof. By Theorem 1.34

Qag(@a)"°=na.

15



On the other hand, if a € 4 then

QA aca
(09

< g% =a.
acAd
Therefore
-0
(Na)" =Ne
aeA aed
Exercises.

1. A is a regular open subset of a Boolean algebra iff

(1) (Vxe A)[[x] = A] and
(i) (Vx¢ A)EFy < x)[[y]n 4 = 0]

Remark. From Theorem 1.6 we see that if B is a Boolean algebra with
natural order < then (|BJ|, <) is a partial order structure hence < induces a
topology on |B|. In this topology the collection of regular open sets forms a
Boolean algebra B’. We wish to show that if B is complete and if B, =
|B| — {0} then {B,, <) is a partial order structure from which we obtain a

complete Boolean algebra By that is isomorphic to B.

Definition 1.36. fis a Boolean homomorphism iff there are Boolean
algebras B, and B, such that /@ |B,| — |B,| and Vx, y € |[B,|.

L flx+ y) = f(x) + f()).
2. fxy) = f)f ().
3. /%) = “f(x).

Under these conditions we say that fis a homomorphism from B, into
Bz- If _
f: lBll onto IB2!
then fis an epimorphism from B, onto B,. If

]_
f: |By| > |By|

onto

then fis an isomorphism from B; onto B,.

fis a homomorphism, or epimorphism, or isomorphism on B, iff there
exists a Boolean algebra B, such that fis a homomorphism, epimorphism, or
isomorphism from B, into or onto B,.

Theorem 1.37. If B, and B, are Boolean algebras and f: |B;| — |By|
such that Vx, y € |B,|

L f(x +y) = f(x) + f(3).

2. f(Cx) = “f(x).
then fis a Boolean homomorphism.
16



Proof.
S =fCCx+ )= "fUx+ "y)="(f(Cx)+ f("y)
S+ ) = SfW).

Theorem 1.38. If /'is a homomorphism from B, into B, then

I

1. £(0) = .

2. f(1) = 1.

3. (Vx,y e [ByD[x < y—f(x) <[]
Proof.

L. f(0) = f(0(70)) = f(0)(~f(0)) = 0.
2 /() =/A+ "H=70+ J1) =1
.x<y—>x=xy
—f(x) = f()f(y)
— f(x) < f(»).
Theorem 1.39. If B is a Boolean algebra with natural order < and if
B, = |B| — {0} then < partially orders B, and

(Va, b € By)[[a] N [b] = 0 «<=ab = 0].
Proof. Left to the reader.

Theorem 1.40. 1f B is a complete Boolean algebra, if B, = |B| — {0}.
it T is the topology on B, induced by the natural ordering < and if By is the
Boolean algebra of regular open subsets of By, as determined by 7, then B
and B, are isomorphic.

Proof. 1f (Vb € B)[F(b) = [b]] then clearly Fis a function. Furthermore

acb]” <~ [aln[b] #0
~—ab # 0
<>a £ ~b
~ae By, — [7b].

Thus [6]7° = (B, — [7bh])°.

ae[b]"® < [a]l = B, — [7b]
<[an[6]=0
<~ a("h) =0
~<a<hb

<~ a € [b].
Thus [6] = [b] ° and hence F maps B into the collection of regular open sets.

xela] + [6] < xe([a] v [6])7°
< [x] = ([a] v [bD~
<= (Vy < 0)[[y] N ([a] © [6]) # O]
< (Vy < x)[ya# 0V yb# 0]
< (Vy < x)[ya + b) # 0]
< (Vy < 0lly] nla + b] # 0]
~[x] s [a+ b]
<~x€la+ b]"°=[a+ bl

IN AN A

17



Thus [@ + b] = [a] + [h] and hence

F(a + b) = F(a) + F(b).
[allb] = {xeBs|{x <a A x < b}
={xeBy|x < ab}

= [ab].

Therefore F(ab) = F(a)F(b). Furthermore
T[] = (B, — [6])° = B, — [b]".
Then

ae "bl—=a# 0 A [alNnb] =0
<a#0Aab=0
—>a#0Aa< b
~ae[7b].

Thus ~[b] = [7b] and hence F(=b) = ~F(b).
We have proved that Fis a homomorphism of B into B,. To prove that
F is an epimorphism, i.e., onto, we note that if 4 is a regular open subset of

B, then
A=l

beA

Therefore

A= A0 = (U [b])_o - > Bl

bed bed
Since B is complete (3a € B)[a = >, b]. Furthermore Vx € A

X < a<—X=dax

Also x < d' - [x] < [@']. Consequently
[x <ad —a<adle[x] <[a]—Ia] < [d]]

Thus

a= > b+[al = [b].

beA bed

Since F(a) = [a] = A it follows that F is an onto map.
Finally if [a] = [6] thena < band b < a. Hence a = b i.e.,

F(a) = F(b) - a = b.
We then conclude that F is an isomorphism of B onto B,.

Exercises. Determine the complete Boolean algebra of regular open sets
in the following partial order structure where a # 0.

1. (P(a), <>.
2. (P(a) — {0}, <D.
18



3. {P(a), <> wherex < y<y < x.
4. {(P(a) — {0}, <>wherex < y<y < x.

Definition 1.41. I'is an ideal in the Boolean algebra Biff / = |B| and

1. 0el
2.a,bel—->a+bel
3.aelnbe|Bl—abel

An ideal I is

I. a proper ideal iff 1 ¢ [,
2. a principal ideal iff (3b € |B))[I = [b]],
3. a trivial ideal iff 7 = {0}.

Theorem 1.42. If 7 is an ideal in the Boolean algebra B then

1. Va,be|B|))la < bel—acl].
2. 1el— 1= B.

Proof. Left to the reader.

Definition 1.43. If fis a Boolean homomorphism of B; into B, then

ker (f) £ {a e [B,| | fla) = 0}.

Theorem 1.44. If fis a Boolean homomorphism on B then ker (f) is a
proper ideal in B. Furthermore if ker (f) = {0} then fis an isomorphism.

Proof. Since f(0) =0, O0cker(f). Furthermore ker(f)< |[B|. If
a, b e ker (f) then

fla+b)=fla)+f(b)=0+0=0.
Therefore a + b € ker (f). If a € ker (f) and b € |B| then
flab) = f(a)f(b) = 0f(b) = 0.
Therefore ab € ker (f). Thus ker (f) is an ideal in B. But
S =1#0.

Therefore 1 ¢ ker (f). Hence ker (f) is a proper ideal.

If ker(f) = {0} and f(x) = f(y) then f(x — y) = 0, consequently
x —y = 0and x < y. Similarly y — x € ker (/) and hence y < x. Therefore
x = y and fis one-to-one.

Theorem 1.45. If [ is an ideal in the Boolean algebra B then
(Va,be|B|)la+ bel—acl A bell
Proof.

a=a+ab =ala+ b)el
b=05b+ ab=bla+ b)el
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Definition 1.46. If Iis a proper ideal in the Boolean algebra B then

1. (Yae |B)a/l £ {xe|B||a("x) + x(~a)eI}.
2. |B|/I £ {a/I|ac|B|}.

Theorem 1.47. If /is a proper ideal in the Boolean algebra B then

all = b/l a("b) + b("a)e L

all = c/I A b/l = d/I—(a+ b)/I=(c+ d)I
all = ¢/I A bJI = dll — ab]l = cd/l.

all = b/l — ~all = ~b|I.

Proof. 1. If a/l = b/I then since a("a) + a("a) =0el we have
a € afl and hence a € b/I. Therefore a(~b) + b(~a) € I. Conversely if a(~b) +
b("a)el and x € a/l then by Theorem 1.42 a(™b), b(~a), x("a), a("x) e L.
Therefore

i

a("b)x + b(~a)("x) + x("a)("b) + a("x)be I
(x("b) + b("x))a + ~a)el
x(©b) + b("x)el

.e., x € b/I. Similarly x € b/I — x € all.

2. If a("¢) + c(Ta), b(~d) + d(~b)e [l then by Theorem 1.45 a(~¢),
c("a), b(~d),d("b) el

Therefore a(~c)(~d) + c(Ta)("b) + b(~d) "¢y + d("b)} a)e [

@+ b)(a)(Cd)+(c+ d(~a)(bel
@a+b)(c+d)+(c+d)(@a+bel
ie, (@ + b/l = (c + d)/L
3. Asin 2, a("¢), c("a), b(~d), d(~b) € I implies
a(Ce)b + c(Ca)d + b("d)a + d("b)cel
(ab)~(cd) + (cd)~(ab) el
i.e., ab/l = cdl.
4. If a("b) + b(~a) € I then
(Ca)" (b + (b)) (Ta) = a(*b) + b("a)el
ie., ~a/ll = ~b/L
Theorem 1.48. If / is a proper ideal in B then |B|// is the universe of a
Boolean algebra, B/I, with operations

all + b/1 = (a + b)/I, all-b/I = ab/l, “(a/l) = (Ca)/1

and distinguished elements 0/ and 1/1.
Proof. Left to the reader.

Theorem 1.49. 1If [ is a proper ideal in B and
(Va e [BN[f(a) = a/I]
then fis a Boolean homomorphism of B onto B/I and ker (f) = L
20



Proof. Left to the reader.

Definition 1.50. 1f B is a complete Boolean algebra then
1. a homomorphism f on B is complete iff

(a < 8D 7( 3 o) = > 56 a5 ([]8) = [T70)]:
bed beAd beA beA
2. an ideal I in B is complete iff
(V4 < 1)[2 be[}
beA
Definition 1.51. 1. A Boolean algebra B is M-complete iff
(V4 < IB])[A eM— be |B|]-
beA
2. A homomorphism f on B is M-complete iff

wa s B acm—r(3 o) =3 s nr([Te) - [1s0)

bed beA bed
3. Anideal 7 in B is M-complete iff
(VA < 1)[/1 eM— be]]-
beA

Theorem 1.52. IfB = (B, U, N, ~, 0, 1> is a complete Boolean algebra,
A

if M is a standard transitive model of ZF, and if 1 € M then B¥ = (BN M,
U, N, 7, 0,1>is an M-complete Boolean algebra.

Proof. 1f a,be|B| N M then
aube|BlnM, anbe|BlnMand -a=1—-aec|B|NM.

Since 0, 1 € |B| N M it follows that B¥ is a Boolean algebra. Furthermore if
A< (|IB| " M) and 4 € M then since B is complete and M satisfies the
Axioms of Unions

L () e|B|n M.
Therefore BM is M-complete.

Theorem 1.53. If (P, <> is a partial order structure, if (P, <> e M,
M a standard transitive model of ZF, and if B is the Boolean algebra of
regular open subsets of P, then |[B| N M is the universe of an M-complete
Boolean subalgebra, B™, of B.

Proof. Since (P, <> e M and M is transitive
(Vp e P)l[ple M].

Since M satisfies the Axiom Schema of Replacement

Ko, [PD I pePieM.
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Then Vb e |B| N M, b° b=, 5% M. Consequently if a, b€ |B| " M
a+be|BlNnM, abe|B| N M, “ae|B| N M.

Since 0, P e M, BM is a subalgebra of B.
If 4 < |B| N M and Ae M then since B is complete and M is a model
of ZF

Zae|B|r\M.

acA

Thus B™ is M-complete.

Theorem 1.54. 1. The kernel of every complete Boolean homomorphism
is a complete ideal.

2. The kernel of every M-complete Boolean homomorphism is an M-com-
plete ideal.

Proof. 1. If fis a complete Boolean homomorphism on B and 4 <

ker (f) then ’
PXIEDWOR

aed aed

Consequently > .., a € ker ().
2. If A < ker (f) and A € M then

HSa) =3 s@=o.

aeA acA

Hence > ., a € ker (/).
Theorem 1.55. Every complete Boolean ideal is principal.

Proof. If I is a complete ideal then, since 1</, 2,,ael and
(Vb e I)[b < 3.e a]. Furthermore

(Vb <> a)

ael

ib = b(z a) e[]-

ael

Therefore

I= lZa]-

ael

Definition 1.56. [ is a maximal ideal in the Boolean algebra B iff [ is
a proper ideal in B and for each ideal J in B

IcJ—I1=JvVvJ=|B|
Theorem 1.57. [is a maximal ideal in the Boolean algebra B iff
(Vbe |B)bel« ~b¢ll
Proof. 1fbe|B| Ab¢l A "b¢land
J={x+y|x<bAryel}
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then 0eJ. If [x; < b] A [y1€1] A [xg < b] A [y el] then
[x, + x3 < b] A [y + el

Therefore (x; + x,) + (¥, + o) €J. Furthermore if ¢ € |B| then ¢ < 1 and
hence

xc<x,<bAycel

Consequently (x, + y;,)ceJ.
Thus Jis an ideal and I = J. Since be J A b ¢ I we have I < J. Further-
more ~b ¢ J for otherwise

Gx <= b)@yeDHl b =x+yl

Then =6 = (b} ~b) = (x + ¥)("b) = 0 + y(~b) € [. This is a contradiction.
Hence J 5 |B] and [ is not maximal.
If [be|B|] A[bel]l A["bel] then 1 = b + ("h)el Hence [ is not
a proper ideal. Thus if 1 is maximal then (Vb€ |[B|)[be [ <> ~b¢I].
Conversely if I = J then (3b e J)[h ¢ I]. Therefore “b el < J and hence

b+ b=1eJ
i.e.,J = |B| and [ is maximal.

Theorem 1.58. If 4 # O and Va € A4, I, is an ideal in the Boolean algebra
B then (Mgea 1, is an ideal in B.

Proof. Left to the reader.
Definition 1.59. 1f B is a Boolean algebra and 4 = [B| then

(Y{{| A< 1A Lisan ideal in B}
is the ideal generated by A.

Theorem 1.60. If [ is the ideal in the Boolean algebra B that is generated
by 4 < |B|, 4 # 0 then b e [ iff b€ |B| and

(HblvabnEA)[b Sbl ++bn]~

Proof. 1IfJ =1{be|B||(3b,---b,e A)[b < b, +---+ b,]} then J is an
ideal in B (details are left to the reader) and 4 < J. Thus / < J. But

be|BlAb<sb +---+bel—>bel
Therefore J < 1.

Theorem 1.61. 1f 7 is a proper ideal in the Boolean algebra B, if “a ¢ [
and if 7, is the ideal in B generated by 7/ U {a} then I, is a proper ideal.
Proof. 1f 1€ 1, then from Theorem 1.60

@FbeD[1 < b + a)
Then
“a= "al < "abel
This is a contradiction. Hence 7, is a proper ideal.
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Theorem 1.62. Every proper ideal 7 in a Boolean algebra B can be
extended to a maximal ideal i.e., there exists a maximal ideal J in B for which
1< J.

Proof. For any well ordering R of |B| we define
10 = I.
I,., = ideal generated by I, U {a}, where a is the first element of |B| for

which a¢ I, A ~a ¢ I, if such an a exists,
= I, otherwise.

L=\ I aeky

B<a

If J = Ugeon I, then I < J < |B|. Furthermore if x, y €J then
(Fe, B)[x e l, A yelyl.

If y = max (e, B) then x, yel, and hence x + ye[,. Also if ae |B| then
ax € I,. Therefore, since 0/ < J, J is an ideal in B. Indeed since J =
Uweon I, and (Va)[1 ¢ 1] it follows that 1 ¢ J i.e., J is a proper ideal.

If J were not maximal then there would be a first element a € |B| such
that a ¢ J and ~a ¢ J. If for each x that precedes a, in the order R, we define

F(x) = po(xel, v " xel)*
then F*“{x | x R a} is a set of ordinals. If
B = UF“{x]xRa}
then 7, is a proper ideal and for each x that precedes a
xel; v "xel,

Since a is the first element in |B| such that a¢ [; A ~a < l; it follows that
acl,,, and hence aeJ.
Since this is a contradiction we conclude that J is maximal.

Exercise. 1. Can two different topological spaces lead to the same
Boolean algebra?

* u.(P(a)) denotes the smallest ordinal having the property P.
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2. Generic Sets

In the material ahead we will be interested in standard transitive models
M of ZF and in partial order structures P = (P, <) for which Pe M.
Although some of the results hold under more general conditions we will
assume hereafter that this is the case i.e., M is a standard transitive model of
ZF, P = (P, <) is a partial order structure and P € M.

Definition 2.1. If < is a partial ordering of P then

1. (Va, b e P)[Comp (a,b) & (3ce P)lc < a A ¢ < b].
2. (VS < P)[Comp (S) 4 (Va, b € S)[Comp (a, b)]].

Remark. The symbol “Comp (a, b)” is read “a and b are compatible.”
Similarly “Comp (S)” is read ‘S is compatible.” By definition a subset S of
a partially ordered set P is compatible if and only if its elements are pairwise
compatible.

Later we will be interested in partially ordered sets P whose elements
“code” certain non-contradictory information. The ordering will be so
defined that a < b means that @ contains all of the information that & does
and perhaps more. Then ¢ < @ A ¢ < b means that ¢ contains all of the

information in both @ and 6. Consequently the information in a is compatible
(consistent) with that in b.

Definition 2.2. Let A be a given class. If P = (P, <) is a partial order
structure and G < P, then G is P-generic over A iff

1. G is compatible.

2. peGAgeEPANpPp<qg—>qgeC.

3. SeAASSPAS =P>GNS#0.

G is P-generic over A4 in the strong sense if in addition
4. Vp,qeG)3reG)r < p A r <4l

Remark. In Definition 2.2 the topology is that induced on P by the
partial ordering <. Consequently, condition 3 asserts that every element
of A that is a dense subset of P, in the order topology, has a nonempty
intersection with G.

Theorem 2.3. If P = (P, <) is a partial order structure, if p is a minimal
element of P and if G = {ge P | p < g} then G is P-generic over 4 (in the
strong sense).
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Proof. 1t qy,q,€ G then p < q, and p < g,. Therefore G is compatible.
If g, € G, g, € P and g, < g, thensince p < g; we have p < ¢q,, henceg, € G.
If SeA and S is a dense subset of P then ge P implies [q] NS # O.
In particular p € P. Therefore {[p] N S # 0. But by hypothesis p is a minimal
element of P ie., [p] = {p}. Consequently p € S. By definition of G, pe G.
Hence pe G N Si.e.,

GN S #O0.

Remark. Definition 2.2 is more general than is necessary for most of
our purposes. For the most part, we will be interested in sets that are P-generic
over a standard transitive model of ZF.

Theorem 2.4. If Pe M, M a standard transitive model of ZF, and if G
is P-generic over M then G is P-generic over M in the strong sense.

Proof. 1f a, b e G and
S={ceP|[c<anc=bh]v [-Compl(ca)r — Comp/c, b)]}
then Vce P

1. 3x < ¢)[— Comp (x,a) v — Comp (x, b)] or
2. (Vx < ¢)[Comp (x, a) A Comp (x, b)].

If 1 is the case then [¢] N S 5% 0. If 2 is the case then ¢ and a are com-
patible. Consequently

Be)ley € ¢ A ¢y € al.
Again from 2, ¢; and b are compatible, hence
(Feg)[ea < ¢4 A ¢y < B

Then ¢, < ¢,¢c; < aand ¢, < bie., [c]N S # 0.
Therefore S is dense in P. Since G is P-generic over M and since S M

SNG#0

i.e.,3ce SN G. Thena, b, c € G. Since G is compatible it follows that c and a
are compatible and ¢ and b are compatible. But ¢ € S. Therefore ¢ < a and
c < b

Theorem 2.5. Let P = (P, <) be a partial order structure with P e 4
and let G < P. Suppose that for all S

I. SeAANSSP—-SU{p|[plnS=0eA.
Then for all S

2.85¢AANSSPAS =P>CGNS#0
iff for all S

3.SeAAScP—>@Fpel@)peSv [p]nS=0]
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Proof. (3—2).If Se A and S is a dense subset of P then

(Vp)llpl N S # 0.

Therefore by 3, (3pe G)[pe S]ie, GN S £ 0.
(2 — 3). Conversely suppose that S€ 4 and S < P. If

S"=S5Su{p|lplnS =0}
then, by I, S’ € A. Furthermore S’ is dense in P for otherwise
@FpeP)l[pln S’ = 0]
But then
[P)NS=0

and hence p € S’ contradicting [p] N .S’ = 0.
It then follows that G N S" # 0 1.e.,

(ApeG)ipeS v [p]nS=0].

Theorem 2.6. If P = (P, <> is a partial order structure and if A4 is
countable then every member of P is contained in some subset of P that is
P-generic over A in the strong sense.

Proof. Since A is countable we can enumerate the elements of A4 that
are dense subsets of P:

S1, Sa ..

If a e P then

(3p. e S)[p: = 4], (Since S; is dense in P)
then

3p2 € S)ps < p1ls (Since S, is dense in P)
etc. If

G ={g|@p)lp: <ql}

then

(Vq,q9' € O)3pi, plpi < g A p; < q'].

Since p; < p; or p; < p; it follows that G is compatible. Furthermore if
peG, geP and p < g then (3p){p; < p < q]. Therefore ge G and in
particular a € G.

If S€ 4 and S is a dense subset of P then (3i)[S = S;]. Since p; € S; it
follows that G N S # O.

If p,ge G then (p; € G)[p; < p A pi < q]. Thus G is P-generic over 4
in the strong sense and a € G.

Remark. In Theorem 2.6 it is not necessary for 4 to be countable. It is
sufficient for 4 to contain only countably many elements that are dense
subsets of P. This will be the case if 4(P) is countable.
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Definition 2.77.  Fis a filter for the Boolean algebra Biff 0 # F < |B| and

l.xeFnyeF—>xyeF.
2. xeFAyelBlAx<sy—>yeF

Examples. 1. {1} is a filter for B.
2.If A#0and a < A then {x < A | a < x} is a filter for the natural

algebra on 2(A).
Definition 2.8. 1f Fis a filter on the Boolean algebra B then

1. Fis an ultrafilter iff (Vx € |B|)[x € F < "x ¢ F].
2. Fis a principal filter iff (Ja € F)[F = {x€|B| | a < x}].

3. Fis M-complete iff (VA4 € M)[A < F— H ace F}
acA

4. Fis a proper filter iff 0 ¢ F.

5. Fis a trivial filter iff F = {1}.

Theorem 2.9. If Fis a filter on the Boolean algebra B then
1. 1eF.
2. xeFAye|Bl-—>x+yekF.

Theorem 2.10. If B is a Boolean algebra and F and 7 are nonempty
subsets of |B| with the property that a € Fiff “a € I then

I'is an ideal in B < Fis a filter for B.

I is a maximal ideal <~ F is an ultrafilter.
I'is a principal ideal <~ F is a principal filter.
Iis M-complete <~ F is M-complete.

. Iis a proper ideal <= F is a proper filter.

. 1is a trivial ideal <> F is a trivial filter.

DU —

Theorem 2.11. 1. If Fis an ultrafilter for B and

flx) =1, xeF
=0, xe|B| — F

then fis a homomorphism from B to 2. If F and B are M-complete so is 1.
2. If fis a homomorphism from B to 2 and F = {x<|B| | f(x) = 1}
then Fis an ultrafilter for B. If fand B are M-complete so is F.

Theorem 2.12. Every proper filter on a Boolean algebra B can be
extended to an ultrafilter on B i.e., if Fis a proper filter on B there exists an
ultrafilter £’ on B such that F < F’.

Theorem 2.13. If F, and F, are ultrafilters on a Boolean algebra B then

1. FlgFQ-—}Fl:Fz.
2. Fli‘éFg—?[Fl“‘Fg#O] A [FQ—FISéO].

Proofs. Left to the reader.
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Remark. From Theorem 2.12 and the definition of a generic set we can
prove a very important result known as the Rasiowa-Sikorski Theorem.

Theorem 2.14. (Rasiowa-Sikorski.) If B is a Boolean algebra, if
1. a, € |B| — {0}, and
2. A, < Bl Ab,e|B|Ab,= D aneco,

acA,
then there exists a Boolean homomorphism 4: |B| — |2| such that

1. A(ay) = 1, and
2. h(b,) = > ha),new,

aeAdp

Proof. Since every homomorphism maps 0 onto 0 and b, = 0 iff
(Ya € A,)[a = 0] there is no loss in generality if we assume that

(Vnew)0¢ A, A b, # 0.

If < is the natural order on Band P = |[B| — {0} then P = (P, <> isa
partial order structure. If

Se=1{peP|p< b, v @acA)p < al}
then Vpe P
p=<"byvpL b
If p < “b, then pe S, and [p]N S, # 0. If p £ ~b, then pb, # 0 i.e.,

pZaz Zpa#O.

a€dn acdp

Therefore (3a € A,)[pa # 0]. But this implies
(3a e 4,)[[p] N [a] # 0]

[p]1 N S, = 0.

Thus S, is dense in P. Since {S, | n € w} is countable it follows from
Theorem 2.6 that there exists a G = P that is P-generic over {S, | n € w} in
the strong sense and such that a, € G.

Since G is P-generic in the strong sense

Vx,yeG)Epe@®p<xAnp=<yl
Therefore
p=px <xy
ie.,

xyed.
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Thus G is a filter for B and indeed, since 0 ¢ G, a proper filter.
By Theorem 2.12 G can be extended to an ultrafilter F. If

h(b) =1, beF
=0, be|B| - F
then f is a homomorphism from B onto 2 (Theorem 2.11). Since a, € F,
h(ay) = 1. Since G is P-generic over {S, | n € w} and for each n, S, is dense
in P
S, NF+#0
ie.,
(GpeF)lp < b, v Fae 4,)lp < a]l.
If p < ~b, then since A is order preserving
1 = h(p) = h("b,) = ~h(b,)
ie., h(b,) = 0. Also
(Vae Ay)la < b,].
Therefore
(VYa e A,)[h(a) < h(b,) = 0].
Thus
> h(a) = 0 = h(b,).

a€d,

If 3be A,)[p < b] then
1=h(p) < h(b) < > h(a) < h(by).

a€EAn

Remark. 1If in Theorem 2.14 we allow a collection of sums of arbitrary
cardinality then the conclusion is false. If, however, B satisfies the countable
chain condition, to be discussed in the next section, then a new axiom by
Martin gives a generalization of the result for sets of sums of cardinality
less than the continuum.

Theorem 2.15. If B is an M-complete Boolean algebra and Z(|B|) N M
is countable then for each 5 # 0 in |B] there exists an M-complete homo-
morphism f from B onto 2 such that f(b) = 1.

Proof. 1If Se?(|B|) " M and if be|B| with b # 0 then, from the
Rasiowa-Sikorski Theorem, there exists a homomorphism f from B into 2
such that f(b) = 1 and f preserves

S a

a€S

Theorem 2.16. If P = (P, <) e M, if G is P-generic over M if B is the
Boolean algebra of regular open subsets of P and

F={pelBiINnM|b=b"AbNG#0}
then Fis a proper M-complete ultrafilter for the Boolean algebra B™.
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Proof. Clearly F < |B| N M. Since P is dense in P, PN G # 0. Also P
is regular open and P € M. Therefore P Fi.e., F # 0.

If x,yeF then xy = xNnye|Bl n M. Furthermore x "G # 0 and
yNn G #0ie.,

[Fe;exN G] A [eg ey NG
Since x and y are open
[e;] € x A [eg] € .
From Theorem 2.4
(Bcel)c < ¢y A c < gyl

Thence(xnNy)n Gie., (x " y)N G # 0. Therefore xy € F.

If xeF, ye|B| N M and x < y then since x N G # 0 it follows that
y N G # 0. Consequently ye F and F is a filter. Furthermore 0 N G = 0,
hence 0 ¢ F and F is a proper filter.

To prove that F is M-complete we note that if A = F and 4 € M then
since B is M-complete [[,cq a € |B] N M. We then need only prove that
I Tecaan G # 0. For this purpose we appeal to Theorem 2.5.

Since M is a transitive model of ZF and P € M it follows that for each S
if Se M and S is a subset of P then

Suf{p|lplnS=0eM.

Since G is P-generic over M we have property 2 of Theorem 2.5. Consequent-
ly, by Theorem 2.5

vVSeM)FpeG)peS vV [p]n S = 0]
In particular if A < Fand A € M then [],c. a € M; hence
1. (HpeG)[peHav[p]ﬂ]_—Ia=0]-
acA acA
If {p] N I 1ses @ = O then since [p] and []qeq @ are each open

[pl=° N (H a) = 0.

acd

(See Theorem 1.29.2.) Thus

[pl°[ Ja=0

acAd

[Ta=< [0

aeAd

If A = AU {[p]~°, then

Ha:[p]“onaz()

acA’ acA
and hence D, "a = 1. But Docp "@ = (Ugesr @) ° S (Ugesr “a)~. Con-
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sequently if S = {J,.u “a, then S is dense in P and S M. Since G is
P-generic over M

(3ge G)[q el Ja

ac4d’

(3ge G)3ace A)[g € ~al.

Then ~ae F. On the other hand, pe[p] ° N G. Therefore [p]~ %€ F ie.,
A’ € F. Therefore ae F. But since F is a filter a, “a € F implies a(~a) =
0 € F, which is a contradiction since F'is a proper filter.

From this contradiction and 1 above we conclude that

e G)[p e[] a]

acA

HaeF.

Thus Fis a proper M-complete filter.
Finally, if ae |B| " M, a + ~a = 1. Therefore (¢ U ~a)~° = P. Conse-
quently a U "ae M and a U ~a is dense in P. Then

(au - a)NnG#0

anG#0vVv "an G #0.

Therefore ae F v ~ae F. But since a(~a) = 0 ¢ F we have
aceF<- "a¢F.
F is an ultrafilter.

Theorem 2.17. If P = (P, <) is a partial order structure, if B is the
Boolean algebra of regular open subsets of P, if F is a proper M-complete
ultrafilter in BM, and if G = {p € P| [p]~° € F} then G is P-generic over M.

Proof. Clearly G € P. If p,qe G then [p] %€ Fand [¢q] %€ F. But
[(PI7°[g]17° = [p1"° N [g] °€ F.
Since F is proper, O ¢ F. Therefore
[PI7° N gl # 0
and hence by Theorem 1.29.2
[Pl [g] # 0

i.e.,, p and g are compatible. Thus G is compatible.
If pe G and p < g then [p] = [¢] hence [p]~° < [¢])~°. But since pe G
implies [p]~° € F and since Fis a filter [q] %€ F, and g € G.
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If S€ M and S is dense in P then

S JIp°
pesS
and hence
-0
(Uwe) =2
pesS
1.e.,

2 bl =1
peES
If GNS =0 then (Vpe S)[p ¢ G] and hence [p]=°¢ F. But F is an
ultrafilter. Therefore ~([p]~°) € F. Consequently

0=]] (1 eF.
PeES
Since F is proper this is a contradiction from which we conclude that
G N S # 0. Therefore G is P-generic over M.

Remark. In Theorem 2.16 we established a procedure for obtaining a
proper M-complete ultrafilter F from a given G that is P-generic over M. In
Theorem 2.17 we showed how to obtain a G that is P-generic over M from a
proper M-complete ultrafilter F. If from a P-generic G we obtain an ultrafilter
F from which we in turn obtain a P-generic G’, how are G and G’ related ? We
will show that in fact G = G’. Similarly if we proceed from F to G to F’
then F = F’.

Theorem 2.18. If G is P-generic over M then G is a maximal compatible
subset of P.

Proof. If there exists a p ¢ G such that G U {p} is compatible and if

S = [p]U{g| =Comp (p, )}

it is easily established that S is dense in P. Indeed if g € P either g is com-
patible with p or it is not. If ¢ is compatible with p then [¢g] N [p] # O; if q
is not compatible with p then g € S. In either case [q] N S # 0.

Since S is dense in P, SN G # 0. On the other hand, since G U {p} is
compatible G contains no elements incompatible with p. Therefore [p] N
G # 0 i.e. 3g < p)[ge G]. Since G is P-generic it follows that p € G. This
is a contradiction.

Theorem 2.19. If P = (P, <>e M, if B is the Boolean algebra of

regular open subsets of P, if G is P-generic over M, and if

F={heBlAnM|b=b"°AbNG+#0}
G ={p|lp] °eF}
then G = G'.
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Proof.
peG—[p]/°NnG#0
—peq’

Le.,, G = G'. Since, by Theorems 2.16 and 2.17, G’ is P-generic over M it
follows from Theorem 2.18 that G = G'.

Theorem 2.20. If B is a natural Boolean algebra, if F is a proper M-
complete ultrafilter for B¥, and if

G={p|[pl°eF}
F'={(eBInM|b=b"AbNG#0)

then F = F',
Proof.
beF -b=b°"AbNnG#0
— (Ap e G)[p € b]
= @llp]=°e F A [p]7° < b]
—beF.

Thus F’ < F. On the other hand, by Theorem 2.17, G is P-generic over M,
and hence, by Theorem 2.16, F' is a proper ultrafilter. Then, by Theorem
2.13, F = F'.
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3. Boolean c-Algebras

Definition 3.1.
1. A Boolean algebra B is a o-algebra iff

(VA < |B])[Z= w— > ae|B| A Hae[B[]-

acd acd

2. A Boolean ideal [ is a o-ideal iff

(VAEI)[E:w%EaeI‘

aed

3. A homomorphism fon a Boolean o-algebra B is a o-homomorphism iff

(v < B4 = w—s(3 a) = 3 5@ n f([Ta) = [1/@|

acA acAd acd acA

Definition 3.2. A Boolean algebra B’ is a subalgebra of the Boolean
algebra Biff |B’| < |B|, the operations in B are restrictions of the operations
in B to |B’|, and the distinguished elements of B" are the same as in B.

Theorem 3.3. If I # 0 and B, is a subalgebra of the Boolean algebra
B=<(B, +,-,,0,1> for ael then B = {Ne; |Bal, +, , 7,0,1> is a
subalgebra of B. If in addition each B, is a o-algebra then B’ is a o-algebra.

Proof. Left to the reader.

Definition 3.4. 1. If I # 0 and B, is a subalgebra of B= (B, +,-, 7,0,1)
for a € I then

(M B.= () IBa, +, - -,0,1>-

ael ael

2. Let A < |B|. Then (N {B' | B’ is a subalgebra of Band 4 < |B'[} is the
sub-algebra of B generated by A.

Definition 3.5. 1f (X, T is a topological space and 4 < X, then 4 is a
Borel set iff 4 belongs to the o-subalgebra, generated by 7, of the natural
Boolean algebra on #(X).
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Theorem 3.6. If (X, T) is a topological space, if

Ay =TU{X —al|aeT}

Aous = {a | (afema)“)[[a = f<f>] v [“ =) fmﬂ}

i<w i<

Ao =\ 45, «eKky,

B<a
then 4 = Uqen, 4, is the set of all Borel sets in X.

Proof. Clearly each element in A, is a Borel set. If A, is a collection of
Borel sets then so is A, ;. If for B < «, 4, is a collection of Borel sets then

U 4,

B<a

is a collection of Borel sets. Therefore A is a collection of Borel sets. To prove
that 4 contains all Borel sets it is sufficient to prove that 4 is a Boolean
o-algebra.

Since A, < Aand 0,1 € A, we have 0, 1 € 4. Since union and intersection
are associative, commutative, and distributive we need only prove that A4 has
the closure and o-closure properties.

We first note that « < 8 implies 4, & A4;. If

bo’ bl’ ...
is an w-sequence of elements of 4 then there exists an w-sequence of ordinals
g, Oy

each less than X, and such that by € A,, by € A, . . ..
Since {ag, @, ...} is a set it has a supremum that is also less than ;.
Therefore

B < R)(Vi < w)[b, € 4,].
Then

Z bieAy1 A Hb,eAaH.

i<w i<w
Definition 3.7. 1f X is a topological space and 4 < X then

1. A is nowhere dense iff A=° = 0.
2. A is meager iff A4 is the union of countably many nowhere dense sets
i.e., A = (U< A; Where Vi < w, A, is nowhere dense.

Theorem 3.8. If X is a topological space and A < X then

1. A is open implies 4~ — A is meager.
2. A is closed implies A — A4° is meager.
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Proof.
LA =D =[A"Nn(X — A °S A °N(X — 4)~°

= AN (X — A°") since A is open
S AN (X — A9
= 0.

2. (4 — A0 = [A N (X — A%)]°
S AN (X — A%~° since A4 is closed
= A° N (X — 4°°)
= 0.

Theorem 3.9. 1. The collection of all meager sets in a topological space
X is a proper o-ideal in the natural algebra on Z(X).

2. The collection of all meager Borel sets in a topological space X is a
proper o-ideal in the Boolean o-algebra of Borel sets.

Proof. Left to the reader.

Theorem 3.10. If B is a Borel set of the topological space X then there
exists an open set G and meager sets N, and N, such that

B =(G + N) — N,
i.e. every Borel set has the property of Baire.
Proof. 1f Bis open then B = (B + 0) — 0. If B is closed
B =[B°+ (B — B%] —-0.

Thus in the notation of Theorem 3.6, the result holds for each element of A,.
If it holds for each element of A, and if B € A, then there is an w-sequence
B,, By, ..., of elements in A,, such that B = >;., Bjor B = ~2;., B;. From
our induction hypothesis there exist open sets G; and meager sets N,' and
Nyt such that

B, = (G; + N,*) — N,
If G = 5., G; then G is open. Furthermore if
Ny=B—-GAN,=G-B
then

leB_G—C—zBi—ZGiEZ(Bi_Gi)Ezlvli

i<w i<w i<w i<w

No=G—-B< > (G- B)s > N

<w i<w

Thus N, and N, are meager and B = (G + N;) — N,.
IfB=-Cand C = (G + N,) — N, for G open and N, and N, meager, then

B=("G+ Ny) — (N, — Ny).
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Since ~G is closed ~G — (~G)° is meager and hence
B=[("G)°+ ("G —("G)°) + No] — (N, — Ny)
where ("G — (7G)°) + N, and N; — N, are meager.

Corollary 3.11. If Bis a Borel set of the topological space (X, T then
there exists a regular open set G and meager sets N; and N, such that

B =(G+ N, — N,.

Proof. By Theorem 3.10 there exists an open set ¢ and meager sets
N; and N, such that B = (G + N;) — N,. But

G=G"°—-(G° - @G).
Hence
B=(G°+N)—-[(G° =G — Ny + Nl

Definition 3.12. A is a compact set in the topological space <X, T iff

A < X and
(VS < T)[A cJ®)—~@3s' < S)[Fin* SHYrnAas (S')H-
Definition 3.13. A topological space <X, T) is
1. a Hausdorff space
iff (Va, be X){a # b— (AN(@))@@N'(b))[N(a) N N'(b) = 0]],

2. a compact space iff X is a compact set,
3. alocally compact space iff Va € X, IN(a), N(a)~ is a compact set.

Theorem 3.14. If the topological space <X, T is a Hausdorff space then
(Va,be X)la# b— @AN(@)b ¢ Na)~]l.

Proof. By definition of a Hausdorff space
(AN(@)EAN'(b))[N(a) N N'(b) = 0].
Therefore b ¢ N(a)~.

Theorem 3.15. 1. Every compact set in a Hausdorff space is closed.
2. Every closed set in a compact space is compact.

Proof. 1. Let A4 be a compact set in a Hausdorff space (X, 7). If
be A~ — A then by Theorem 3.14

(Vae A)EAN(@)b ¢ N(a)~].

Since A < | J{N(a)|aeAd4 A b¢ N(a~} and since A4 is compact, there
exists a finite collection of elements of 4

a,...,a,

* Fin (S) means “S is finite”.
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and a neighborhood of each such point
N(al)a L] N(an)
such that
A< N(a) V-V N(a,)
and b ¢ N(uy) ™, b¢ N(ag)™, -+, b¢ N(a,)” . Therefore

@ANUB)IN,(6) N N(ay) = 0]
(3N2(0))[N2(b) N N(ay) = 0]

(ANL(D))[NA(b) N N(a,) = 0].
If
N(b) = N.i(b) n---N N, (b)
then N(b) N A = 0. But this contradicts the fact that be 4~.

Therefore A~ — A = 01i.e., A is closed.
2. If A is a closed set in the compact space (X, T and if

[S< T] A [Ag U(S)}
then
Vae X — A)[AN(@a) = X — A].
Consequently X < J(SYVU{N(@)|ae X — 4 A N(@a) € X — A}. Since
(X, T> is compact there exists a finite collection of sets in S
D,,..., D,

and a finite collection of sets in {N(a) | [ae X — A] A [N(a) € X — A]}

N(al)7 ] N(am)
such that

Xc D,v---uUD,UN(a)---U N(a,).

Then

A< D,v---v D,.

Definition 3.16. A set S has the finite intersection property iff every
finite subset of S has a nonempty intersection.

Theorem 3.17. The topological space (X, T» is compact iff for each
collection S of closed sets with the finite intersection property

() (S) #0.

Proof. (By contradiction.) Suppose that (X, T is a compact topological
space and there exists a collection of closed sets S with the finite intersection
property but for which () (§) = 0. Then

X-0=x-© = x-a.

AeS
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Since X — A is open for each 4 € S and (X, T is compact 34,,..., A, €S
X=UJWX-4)=x-)A.
i<n isn
Therefore (;<n» 4; = 0. This is a contradiction.
Conversely suppose that every collection of closed sets S with the finite

intersection property also has the property () (S) # 0. Suppose also that
there exists a collection of open sets 77 such that

X< | Jm)
but V4,,..., 4, T’
X¢ 4.

isn

Then
NX-4)=x-J4#0.

isn isn

Thus {X — A | A€ T’} is a collection of closed sets with the finite inter-
section property. Then

X-Ja=Nx-4=#0

AT’ AeT’

1.e.,
x ¢ Ja.
This is a contradiction.

Theorem 3.18. If (X, 7> is a topological space, if X' < X and
T ={X'N"N| NeT}then (X', T'> is a topological space. Furthermore

1. <X’, T") is a compact space if X' is a compact set,
2. (X', T"> is a Hausdorff space if ( X, T is Hausdorff.

Proof. Left to the reader.

Definition 3.19. 1f (X, T) is a topological space, if X' € Xand T' =
{X'N N| NeT}then T is the relative topology on X’ induced by T and
(X', T"> is a subspace of (X, T).

Theorem 3.20. If (X, T) is a topological space, if X' < X, if T’ is the
relative topology on X’ induced by T, if B is a base for T and

B ={X'""nN|NeBj
then B’ is a base for T".

Proof. Left to the reader.

Theorem 3.21. If (X, T) is a topological space, if X' < X, and if 7" is
the relative topology on X’ induced by T then

1. Ais an open set in T implies 4 N X’ is an open set in 7"
2. A is closed in T implies 4 N X' is closed in 7'
3. Ais clopen in T implies 4 N X" is clopen in 7.
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Proof. 1. If Ais open in T then
(Vae AN X")3N(a)e T)[N(a) < A].
Then N(@) N X' €T’ and ae N(@ N X' < AN X'. Thus A N X’ is open
" 2 Ifac X' and (VN(@) e T)[N(a) N (A N X’) # 0] then
(YN(@)e T)[N(a) " X' N 4 # 0].
Thus
(YN(a) e T)[N(a) n 4 # 0].

Since A is closed ae A and henceae A N X' ie., AN X is closed in T".
3. If A is both open and closed in 7 then by 1 and 2 above 4 N X is
both open and closed in 7".

Theorem 3.22. If (X, T) is a locally compact Hausdorff space then for
each open set 4 and each a € A4 there exists an open set B such that

aeB A B™ < A.

Proof. 1f A is an open set in X and g € 4 then since (X, T is locally
compact 3N (a), N(a)~ is compact. If

M = (N(@)~ N A)°
then M~ is also compact. If
T"={M"NA|AeT}

then <M~, T"> is a compact Hausdorff space. In this space M~ — M is
closed and hence compact. Moreover

(VyeM~ — M)AN(y)eT)la¢ N(y)~].
Since M~ — M is compact there is a finite collection of elements of 7’
N(yl)s ] N(}’n)
such that
M~ =M< N(y)V---YN(y)
and
a¢N(y)~™ A= ANagN(p)~.
Therefore there exist neighborhoods in 7’
Mi(a), . .., My(a)
such that
M@ N N(y)=0 i=1,...,n
If M(a) = Ni<. Mi(a) then
M@ N [N(y)V---UN()] =0
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Therefore
M@a)ys M~ — [N(y) Y- U Nyl

But since N(y,)V---UN(y,) is open M~ — [N(y) Y- -UN(y,] is
closed. Hence

M(a)~ = M~ — [N(y) V- U N(»)
Therefore
M@ n[Ny)V---INO)] =0

and

M@~ < M = (N(a)~ N A)°.

But since M(a) e T",

@ANeT)[M(@) = M~ N N].

And since M(x) < M = M°
M@ =MnNNEeT.

Theorem 3.23. (The Baire Category Theorem.) Every open meager set
in a locally compact Hausdorff space is empty.

Proof. 1f Bis an open meager set in the locally compact Hausdorff space
(X, T> then there exists an w-sequence of nowhere dense sets

Ao, Al’ “ e
such that
B = 4.
a<w

If B # 0 then by Theorem 3.22
(AN, e T)[N,~ € B]
and since A, is nowhere dense
AN, € N))[N, N 4, = 0]
for otherwise N, < A, 7% Then
(AN; e T)[N3~ = Ng).
Inductively we define a nested sequence of neighborhoods such that

Nn+1§N,:+1§Nn, h < w.

Consequently
m Nony1 = m Nony1 # 0

n<w n<w

(Theorem 3.17). Therefore
3x € () Nansr E B.

n<w
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But then Vn e w
XE Nagni1 A Nopyy N A, = 0.

Therefore x ¢ | seo 4. This is a contradiction that compels the conclusion
B =0. '

Theorem 3.24. If B is the Boolean o-algebra of all Borel scts in the
locally compact Hausdorff space (X, T> and if I is the o-ideal of all meager
Borel sets then B// is isomorphic to B’, the complete Boolean algebra of all
regular open sets in X.

Proof. 1If
F(G) = G/, Ge |B|
then F(G,) = F(Gy) ~ G, — Gyl A Gy — G, 1. Then G, — G5 is meager
and open. Thus, by the Baire Category Theorem
Gl - Gz_ = 0.
Similarly
GQ - Gl“ - O.
Then G, € Gy~ A G, € G,~. Since G, and G, are each regular open
Gl = Glﬂ < G2—0 = G2 and Gz = GQO < Gl-—O = Gl'

Therefore G, = G, and hence F'is one-to-one.
If G €|B| then by Corollary 3.11 there exists a regular open set G’ and
meager sets N;, N, such that

G = (G + Ny — N,
Then G — G' < N, — N,ie., G — G’ el Similarly G — G eI and hence
G/l = G'|I
Then
F(G) = G'[I = G|IL

That is F is onto.
That F has the morphism properties is clear from its definition.

Definition 3.25. A Boolean algebra B satisfies the countable chain
condition (c.c.c.) iff

(VS < |B|)[Va,be S)la # b->ab = 0] = S < w].

Theorem 3.26. If X is a topological space with a countable base then the
Boolean algebra of regular open sets in X satisfies the countable chain
condition.

Proof. If Uy, Uy, ... is a countable base and if S is a pairwise disjoint
subset of |B| then since the elements of S are open it follows that

(VA € 8)@n < w)[U, < A].
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Furthermore
V4, Be S)[[U, < Al A [U, < B]l— A4 = B].
Therefore S is countable.

Theorem 3.27. If B satisfies the c.c.c. then for each subset E of |B| there
exists a countable subset D of E such that D and E have the same set of upper
bounds.

Proof. 1f I'is the ideal generated by E then E < I. Consequently every
upper bound for [ is an upper bound for E. Conversely

(Vbe@3b,,....,b,eE)b < b, + -+ b,].

Therefore every upper bound for £ is also an upper bound for I.
From Zorn’s Lemma there exists a maximal set F of disjoint elements of
I. By the c.c.c. F < w. Since F < I every upper bound for Iis an upper bound
for F. If b, is an upper bound for £ that is not an upper bound for I then
(3b, € D[by £ byl
Therefore b, — b, € I. Furthermore, since (Vb € F)[b < b,]
(Vb e F)[b N (b, — by) = 0.

Then F U {b, — by} is a collection of pairwise disjoint elements of 7. But this
contradicts the definition of F. Thus every upper bound for Fis also an upper
bound for /.

We have established that F is countable. If

F = {fn l n < w}
then since F < I and I is generated by £
(Vn < w)3by" - - by, "€ E)f, < by™ + -+ - + b, "]

From this existence property and with the aid of the 4C, we define a set
D thus:

DE2Gr|n<wAi=12..., m)
then D < E, D < wand D and E have the same set of upper bounds.

Theorem 3.28. Every Boolean o-algebra B satisfying the c.c.c. is com-
plete.

Proof. By Theorem 3.27 if E < |B| then there exists a countable subset
D of £ such that D and E have the same set of upper bounds. Since D is
countable and B is a o-algebra
>b

beD

exists. Since D and E have the same set of upper bounds
>b
beE
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exists. Indeed

b= )b

M

M

=
o
o]
=4

€

©

Remark. In later sections we will need certain properties of product
topologies which we will now prove. We begin by defining projection func-
tions for cross products. Hereafter the symbol [ will be used to denote cross
products and Boolean products. We will rely on the context to make the
meaning clear.

Definition 3.29.

(Vae A)(vc = [1%)10.0) 2 (@) | 7 €1

aeA

Theorem 3.30. If A # 0 and Ya e 4, {(X,, T, is a topological space then

T = {B & H Xa | @ne w)Goe AM(Vi < m[[psa(B) € Ty)

acA
N (Va e )la # o) > pu8) = X}
is a base for a topology on [J,es Xa.

Proof. 1f A # 0 then 3be A. If fe[]ses X, then f(b) € X, and hence
AN(f(b)) € T,. Then

releel] % le@ e NGO e

agAd

Clearly, if By, B, € T' then B, N B, € T’. Therefore by Theorem 1.18 T’
is a base for a topology on [gca Xo.

Definition 3.31. The topology T of Theorem 3.30 we call the (weak)
product topology on [.,.4 X, induced by the topologies 7T,, a€ A. This
topology we will denote by

7.

acA
[ TeeaXeos [ JaeaTey we call a product topological space.
Theorem 3.32. If A # Oand Va e 4, (X, T,) is a topological space then
(Vae A)(VC =S| Ta) [po(C) € T,).

acA

Proof. Left to the reader.

Theorem 3.33. (Tychonoff’s Theorem.) If 4 % 0 and Yae 4, {X,, T,)
is a compact topological space then the product topological space [ Joes Xa, 1S
also compact.

Proof. Let S be a collection of closed subsets of [ [se4 X,, With the finite
intersection property and

T2 {B < Q’(H Xa) | S = B A B has the finite intersection property}-

acAd
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Let {B,|bel,} be a subset of T, linearly ordered by inclusion. Then
S S Uber, By and for each finite subset of | J,e;, B, there is a b €I, such
that that subset is contained in B,. Since B, has the finite intersection
property e, By has the finite intersection property. Thus

U B,eT.

belg

Since every linearly ordered subset of T has an upper bound in 7, with
respect to inclusion, T contains a maximal element by Zorn’s Lemma. Thus
there is a B in T such that no proper extension of B has the finite intersection

property.
Since B has the finite intersection property {p,(C) | C € B} has the finite
intersection property for all a € A. Therefore if
C, = {pa(c)— ] CEB}

then C, is a collection of closed subsets of X, and C, has the finite inter-
section property. Since {X,, 7,> is compact it follows from Theorem 3.17
that (M (C,) # O i.e.,

3b, € () (Co).

If b = [ 1aea {bo) and if N(b) is any neighborhood of 4 in the product
topology then

by € po(N(b)) € T,.
Since
(VC € B)[b, € po(C)~]
(VC e B)[pu(N (b)) N pC) # 0].

Consequently

(VCe B)[N(b) n C # 0].
In particular since S < B

(VA e SYN() N 4 # 0].

Since S is a collection of closed sets, b € 4 for each 4 in S i.e.,

() (S) # 0.
Therefore by Theorem 3.17 the product topology is compact.

Theorem 3.34. If A # 0 and Vae A4, (X, T,)> is a Hausdorff space then
the product topology on [ ;4 X, is HausdorfT.

Proof. 1If f,g€]]sea Xo and [ g then (3b€ A)[f(b) # g(b)]. Since
{Xy, Tyy is a Hausdorff space IN(f(b)), N'(g(b)) e T,
N(f(b)) " N'(g(b)) = 0.

Then M = {hellsen X. | h(b) e N(f(b))} is a neighborhood of f and
M’ = {h€[lsea Xo | h(b) € N'(g(b))}is a neighborhood of g. But M N M’ =
0. Therefore the product space is Hausdorff.

46



4. Distributive Laws

In this section we wish to discuss several generalized distributive laws for
Boolean algebras that will be of importance in the work to follow.

Definition 4.1. If « and B are cardinal numbers then a complete Boolean
algebra B satisfies the («, 8)-distributive law ((«, 8)-DL) iff for each

{b;e|Blliel njet} with T<anJ<§B
[1>065=2 1Tt
iel jeJ fell ier
B satisfies the complete distributive law iff it satisfies the («,3)-distributive
law for all « and B.

Remark. From Theorem 1.12 every complete Boolean algebra satisfies
the (2, B)-DL. We can easily provide an example of a complete Boolean
algebra that does not satisfy the (w, 2)-DL.

Example. If B is the complete Boolean algebra of all regular open sets
of the product space 2¢ then B does not satisfy the (w, 2)-DL: If

b 2 {f€29| /() =0}, by 2 {fe2°|f() =1}
then by, and b;; are each clopen and hence regular open. Then

H (biO + bil) =1

lew

But Vfe 2¢

[Tewo = (o) =177 = 11 =0

iew iew

Z H bisw = 0.

fe2w iew

Therefore

Theorem 4.2. If B is a complete Boolean algebra and
{byliel A jelJ} < |B]
then
z H biw < H Z by;.
fell iel iel jeJ
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Proof.

(Vf e J’)[b,_,m <> b,,]

jeJ
(Vfe JI)[H biray < H Z bi;‘]
iel iel jeJ
Z H iy < H Z by;.
fell tel iel jel

Theorem 4.3. If B is the complete natural Boolean algebra of all subsets
of A # 0 then B satisfies the complete distributive law.
Proof. Ifb;; € A forielandjeJ then

be (| by« (VieD@je Nb by

iel jer

<= (3feJN)Vie )b e by]
~be U m bi sy

ferl el

Remark. We next show that to within isomorphism the complete
natural Boolean algebras are the only completely distributive complete
Boolean algebras.

Theorem 4.4. For each completely distributive complete Boolean algebra
B therz exists a nonempty set A for which the natural algebra on 2(A4) is
isomorphic to B.

Proof. 1f Vb € |B|

Ay = —b

and

A= {H Qo5 | SE2BT A I—[ Ay sy F 0}

belB| beiB|

then since B is completely distributive
1= H (avo + an) = z H s, 1oy
belB| fe2lB| be|B|
Consequently
3fe ZIBI)[H Ay oy F 0]
be|B}
i.e., A # 0. Furthermore
celBl—c=c ]__I (@vo + apy) = Z (C I—I ab.f(b))'
beiB| fealBi

If ¢ # 0 then If e 2!B!
c H ap, sy 7 0.

belB|
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But Vf e 2B if f(¢) = 0 then a; 5, = ~¢ and

| l Ap sy = °C

be|B|

c | l @y, 1y = 0.

be(B|

If f(¢) = 1 thena, ;. = ¢ and

l | Ao r0 < €

be|B|

4 | I Ay sy = I— Ay, 1(v)-

be|Bj be|B|

Thus, if S = {TToeis @0 € A | f(¢) = 1} then ¢ = 5,5 b. Therefore, if
we define F on Z(A) by

F(S)=2bSc 4

beS

then F maps #(4) onto |B|.
To prove that F is one-to-one we note that if b,, 5, € 4 A by # b, then

If, fa€2®
by = H Ay, 1y o) 7 I_I Ay, fo0) = bs.

beiB} beiB|

Therefore 3b € B}, f1(b) # f2(b) and hence

Ay, 1,00, 1500 = 0.
Consequently b,b, = 0.
[fbed ANS< AAb< F(S) then

bF(S) = > bc # 0.

ceS

Hence 3c € S, be # 0. But b¢ # 0 iff b = ¢. Therefore b € S. Consequently if
S < A4 then

(Vbe A)be S b < F(S)].
From this fact it follows that if S € 4 and S’ < A4 then
F(S)=FS)—>S=S5,
i.e., Fis one-to-one.
Furthermore
F(SUS)= > b.

beSuUS’

But

beS—>b < F(S) < F(S) + F(S")
beS' —b < F(S") < F(S) + F(S").
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Therefore
F(SU S < F(S) + F(S).
If (Vbe SU S)b < c] then
F(S)<cnA F(SY<c¢

hence
F(S)+ F(SY < ¢
ie.,
F(SU S') = F(S) + F(S").
Finally Ve e 4
c<F(A—- S)y<-ced - S
~c¢S
~c £ F(S)
~c < “F(S).
Therefore

F(4 — S) = ~F(S).
Thus Fis an isomorphism of #(A4) onto |BJ.
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5. Partial Order Structures and Topological Spaces

In the work ahead we will be interested in Boolean algebras that are
associated with certain partial order structures (Definition 5.4) and Boolean
algebras of regular open sets of certain topological spaces. Quite often we
find that the Boolean algebra associated with a particular partial order struc-
ture is the same algebra as that of the regular open sets of a certain topological
space even though there appears to be no connection between the partial
order structure and the topological space. In this section we will establish
such a connection. For a given partial order structure we will define a topolog-
ical space of ultrafilters for the partial order structure (Definitions 5.2, 5.3,
and 5.6). We will show that in general this topological space is a T;-space
(Theorem 5.7). If, however, the partial order structure is one associated with
a Boolean algebra, then the topological space is in fact Hausdorff (Theorem
5.8).

Definition 5.1. A topological space (X, T is a T,-space iff it satisfies the
T,-axiom of separation: Vx, ye X

x#y—>@AN@)y ¢ N A ANIx ¢ N())

Remark. For the results we wish to prove we first define filter and
ultrafilter for partial order structures.

Definition 5.2. Let P = (P, <> be a partial order structure and let F
be a nonempty subset of P. Then Fis a filter for P iff

1. Fis strongly compatible ie., (Vx,ye F)3ze F)[z < x A z < y].
2. Fis upward hereditary i.e., (Yx e F)(VyeP)[x < y—>yeF].

Remark. From Definitions 2.2 and 5.2 and from Theorem 2.4 we see
that if G is P-generic over M, with M a standard transitive model of ZF, then
G is a filter for P. In fact G is an ultrafilter in the following sense.

Definition 5.3. F is an ultrafilter for the partial order structure P iff F
is a maximal filter i.e., Fis a filter for P and for each filter F’

FS F—-F=F.

Remark. Note that an ultrafilter for a partial order structure P =
{P, <> need not be a proper filter, i.e., P could be an ultrafilter. Indeed if P is
compatible P is an ultrafilter.
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We next establish a connection between filters for Boolean algebras and
filters for partial order structures.

Definition 5.4. Let B = (B, +, -, 7,0,1> be a Boolean algebra with
natural order < (see Definition 1.5). Let P = B — {0} and P = (P, <).
Then P is the partial order structure associated with B.

Theorem 5.5. Let B = (B, +, -, 7,0,1> be a Boolean algebra and
P = (P, <) be its associated partial order structure. If F is a nonempty
subset of |B| then Fis a proper filter for the Boolean algebra B iff Fis a filter
for the partial order structure P.

Proof. Let F be a proper filter for B. Then 0 ¢ F ie., F< B — {0}. If
x,y € F then xy e F and hence there exists a z € F, namely xy, such that
z < xand z < y. Thus Fis a filter for P.

Conversely let F be a filter for P. If x, y € F then there is a z € F such that
z < xand z < y. Therefore z < xy and since Fis upward hereditary xy € F.
Furthermore since 0 ¢ P it follows that 0 ¢ Fi.e., Fis a proper filter for B.

Definition 5.6. Let P = (P, <) be a partial order structure and let F
be the set of all ultrafilters for P. Then

N(p) 2 {(FeF|peF},peP
T = {G<c F|(YFeG)3peP)[FeN(p) < G].

Theorem 5.7. <F, T) is a T;-space.

Proof. First of all we shall show that (F, T) is a topological space. From
Definition 5.6 it is clear that O and F are each open. Let G, and G, be open
sets and let F e G, N G,. Then there exist p and p’ such that

Fe N(p) < G]_
and
FeN(p) < G,

Then p € F, p’ € F and hence there exists a z€ Fsuch that z < pand z < p'.
Therefore, since every ultrafilter is upward hereditary

FeN(z) € N(p) 0 N(p') < G, N G,

and hence G, N G, is open.

It is clear that if each G,, a € A, is open then | {G, | a € A} is also open.
Thus <F, T is a topological space.

Next we will show that (F, T) satisfies the T;-axiom of separation. Let F;
and F, be different elements of F. From the maximality of F; and of F,,
there isa pe F;, — F, and a p" € F, — F;. Then F,¢ N(p) and F, ¢ N(p")
i.e. <F, T) is a T,-space.

Remark. There exist examples of partial order structures such that the
corresponding topological space {F’, T') is not Hausdorff.
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Theorem 5.8. Let P = (P, <) be the partial order structure associated
with the Boolean algebra B. Then (F, T) is a Hausdorff space.

Proof. Suppose not. Then there would exist distinct F;, F; € F such that
(Vp, € F,)(Vpy € F.)3FeF)[p, e F A pye Fl.

Then Are F)[r < p1 A r < polie., pips # 0.

If G ={peP|(3p, e F)3ps € F)[p.p: < pl} then G is a filter for P. For,
if p, g € G then

(3p1, g1 € F1)3pa, g2 € FR)[pipa < P A 142 < q1.

Since F, and F, are filters p,q, € F, and p,q, € F,. Furthermore p,q,p.q, <
pg. Then pg € G i.e., for each p, g € G there is an r € G, namely pg, such that
r < pand r < q. Clearly G is upward hereditary.

Since G is a filter, since F;, < G and F, < G, and since F; and F, are distinct
ultrafilters we have a contradiction. Therefore <F, T) is Hausdorff.

Remark. In order for F to be a filter for a partial order structure P =
(P, <> we require that F be strongly compatible (Definition 5.2). This
raises a very natural question. Why do we not define a more general notion
by requiring that F only be compatible? That is, instead of requiring F to
satisfy 1 of Definition 5.2 why do we not require instead that F satisfy the
weaker requirement

1. (Vx,ye F)(3zeP)[z < x A zey]?

For purposes of discussion let us call filters as originally defined strong
filters and filters as newly proposed, weak filters. The change from strong
filter to weak filter also changes the notion of ultrafilter for being maximal
among weak filters is a stronger restriction than being maximal among strong
filters. There are two interesting consequences of this fact. If ultrafilters are
maximal among weak filters then the sets N(p) of Definition 5.6 form only a
subbase for the topological space <F, T). Furthermore this space is Haus-
dorff. The fact that (F, T) satisfies the T,-axiom of separation was first
pointed out by H. Tanaka.

Nevertheless, for the work that comes later we need strong filters and we
want ultrafilter to mean a strong filter that is maximal among strong filters.
Thus, later use brings us back to the definition as given.

We do not know whether every T;-space is homeomorphic to a topo-
logical space (F, T) associated with some partial order structure or whether
every Hausdorff space is homeomorphic to a topological space {F’, T")
associated with the partial order structure associated with a Boolean algebra.

Let P = (P, <) be a partial order structure and let F the set of all ultra-
filters for P. In order to investigate some relations between the topologies on
P and F we introduce the following notation.
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Definition 5.9. Let G, be an open subset of P and G, be an open subset

of F. Then

54

Gt =J W | Ipl < Gy}
Gs = U Ipl | N(p) = Ga}.

Remark. Clearly G¥ and G4 are open subsets of F and P respectively.
Theorem 5.10. If G, and G, are open subsets of P and F respectively then

1. G, € GF-.
2. Gy = Gb*,

Proof.

l.aeG,—[a]l € G,
— N(a) < G¥
— [a] c GF2 (since G¥F is an open subset of F)
—ae GF,
2. FeGy— (Jae F)[N(a) = G,]
— (Ja e F)[[a] = G5]
— (3a e F)[N(a) = G5*] (since G4 is an open subset of P)
— Fe Gs*.

Theorem 5.11. 1. If G, and G, are open subsets of P then
G, = G, — Gf = G3.
2. If G, and G, are open subsets of F then
G, < G,—~ G < Gs.
Proof. Left to the reader.
Theorem 5.12. If G is an open subset of F and [a] < G2, then N{a) < G.
Proof.

[al € G*—aeG?
— @b)[Nb) = G A ac[b]]
—(3b = a)[N(b) = G]
— (3b)[N(a) € N(b) = C]
— N(a) € G.

Theorem 5.13. 1If G is a regular open subset of P then G** = G.
Proof.

ae G* —[a] = G*
— N(a) = G*
— (VF)[a e F — F e G*]
— (VF)[ae F— (3b e F)[[b] = G]I.



For each ¢ < a thereis an ultrafilter £’ for P such that ¢ € F’. But then, since

¢ < aand ce F' we have ae F'. Consequently if a € G*2 then 3be F' N G.
Since £’ is an ultrafilter for P and since both ¢ and b are in F’

@' eF)b <cnb <bl
But e G A b" < b. Therefore 6" € G i.e.,

aeG* — (Ye < a)(3b < o)[be (]
— (Ve < a)[[e] N G # 0]
— (Ve < a)[ce G7]
—[a]l € G~
—ae(G?°
—aed.

Then by Theorem 5.10, G** = G.
Theorem 5.14. If G is an open subset of F then G%* = G.

AN IA

Proof.

Fe G* — (Ja e F)[[a] € G*]
— (Jae F)[N(a) < G]
— Fed.

Therefore by Theorem 5.10, G** = G.

Theorem 5.15. Let G; and G, be open sets of a topological space
(X, T If for each regular open set H

GNH=0~>G,NH=0
then G, = G, ~°.

Proof. 1f H = (X — G,)° then H is regular open. If G, N H = 0 then
G, N H = 0 and hence

Go,NH™ =0.
Therefore
G, X — H =G,
Theorem 5.16. 1. If G, is an open subset of P then
T =0—-G, =0.

2. If G, is an open subset of F

G} =0—G,=0.
Proof. Left to the reader.

Theorem 5.17. 1. If G is a regular open subset of F then G* is regular
open.
2. If G is a regular open subset of P then G* is regular open.

55



Proof. 1. Let G, = (G*)~°. Then
G = G** < (G*)~°* = Gf.
If G, is regular open and G N G, = 0 then
(GC*NGH* S G**NGY* =GN Gy = 0.
Therefore G* N G4 = 0 and hence G, N G5 = 0. Furthermore
GCENG) =G *NGy =G, NnGs =0.

Thus G¥ N G, = 0 and hence, by Theorem 5.15, G¥ < G~° = G. Conse-
quently

G = Gf = G,
i.e., G is regular open.
2. Let G, = (G*)~°. Then
G < G* < GS.
If H is regular open and G N H = 0 then
(G*FNH*»Y < G*NH* =GN H=0.
Therefore G* N H* = 0 and hence G, N H* = 0. Furthermore
(GENH* S Gs*NH* = G,n H* = 0.
Consequently G2 N H = 0 and hence G5 = G~° = G. Thus, by Theorem 5.14
G* = G4* = G,
i.e., G* is regular open.
Remark. From the foregoing theorems we obtain the following result.

Theorem 5.18. If P = (P, <) is a partial order structure, then the
Boolean algebra B of regular open subsets of P is isomorphic to the Boolean
algebra of regular open subsets of F.

Proof. The mapping * is a one-to-one, order preserving mapping from
the first algebra onto the second.

Remark. As you will see later, it is useful to consider the Boolean
algebra of all regular open sets of a product topological space. So we shall
show a general theorem about that. If a partial order structure P = (P, <)
has a greatest element, then we denote it by 1: (Vp € P)[p < 1]. In case P has
an element 1, let P, = P — {1} and P, = {P,, <). Then clearly the Boolean
algebra of all regular open subsets of P is isomorphic to that of P,. Conse-
quently, with regard to Boolean algebras of regular open subsets of partial
order structures, we may assume that the partial order structures have a
greatest element 1.
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Definition 5.19. Let P, = (P;, <>, iel, (I an index set) be a partial
order structure having a greatest element 1;. Then the product structure

P 2 [I.., P, 2 (P, < is the following partial order structure.

I.P2ipe nPi | p(i) = 1, for all but finitely many i’s}.
iel

- (¥p.g€P)p < g (F1e Dip@) < g(]]

1 = the unique p € P such that (Yie I)[p(i) = 1,].

L 1

Theorem 5.20. Let P = [ ]i.; P; be given as above and let F and F; be
the 7--spaces corresponding to P, and P; respectively in accordance with
Definition 3.6. Then F is homeomorphic to the product space [ [;c; F..

Proof. Foragivenieland an element ag; € P, let 4; be the element of P
whose ith projection is g; and whose jth projection is 1; for j # i, i.e.,
For each FzF, let F;, ={a,€P;|d, e F};. Then F, is a filter for P; since
a. < b, implies 4, < b,. Furthermore F, is maximal: If G, is a filter for P,
suchthat F. = Giandif G = {a=P|a(i)eG; A (Ixe )YV # Dla()) = x(N]},
then G is a filter and F < G. But F is an ultrafilter. Therefore G = F. For
2ach 2 = G. and each x € F we define a b as follows

b(i) =a.  b(j) =x(j) for j#i

Then =G = F. Hence b/(z\) € F and aeF, i.e., G, < F. Consequently
F. = G.. that is. F; is an ultrafilter for P;.

Thus for each Fe F and each i € /1, F; is an ultrafilter for P,, i.e., F; € F,.
From this fact we then define a mapping g:F — [ [ic; F; by

g(F) = {Fier-

The furction g is both one-to-one and onto (surjective). To prove this
we pead only show that each I-sequence, {F;)i; uniquely determines an
F for which g(F) = {Fi i First we note that if

F=:c=sP|@i, - -ihsD@a,eF) - Qa, e F)d,- - d, < al

where 4. --- 4. (j) = a;, if j = i, for some kand 4;, - - - 4, (j) = | otherwise,
then Fis an ultrafilter for P and g(F) = {(F);. Thus g is onto. Second if
F = & a=F}andif g(F) = {F;e then Fis the smallest filter for which
F. = F.for each ie I Therefore g is one-to-one.

A

ragivena € Pconsider N(a) = {FeF |ae F}.Sincea = g;,- - - d;

Now fo
for scme a.. = P ,a;, €P. . we have

(PO
FeN@ <aeF
<~dy€FAN--- NG €F
—~ FeN(@)n--- 0" N@,),
Le. £ N = N(d,) N --- 0 N(G,). Therefore g is a topological mapping.
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Remark. When we consider regular open sets of a partial order structure
P, the following notion is very useful.

Definition 5.21. A partial order structure P = (P, <) (or a partially
ordered set P) is called fine, if the following condition is satisfied :

(Vp,qeP)lg £ p—~@reP)lr < g A — Comp (r, p)]].
Lemma 5.22. If P is fine, then for each pe P

Proof. We have only to show [p]=° < [p]. Let g € P such that g ¢ [p],
i.e.,q £ p. Then, by Definition 5.21, (3r € P)[r < g A — Comp (r, p)]. There-
fore, [r]M [p] = Oand hence r ¢ [p]~. This implies [¢] & [p]~. Consequently

q¢[p]™° e, ifge [p]~° then g € [p].

Remark. Many P’s used in later sections are fine.

58



6. Boolean-Valued Structures

The notion of a Boolean-valued structure is obtained from the definition
of an ordinary 2-valued structure by replacing the Boolean algebra 2 of two
truth values “truth” and “falsehood” by any complete Boolean algebra B.
While some of the basic definitions and theorems can be generalized to the
B-valued case almost mechanically the intuitive ideas behind these general
notions are more difficult to perceive.

Throughout this section B = (B, +, -, 7, 0,1> denotes a complete
Boolean algebra.

Definition 6.1. If & is a first order language with individual constants
Cos Cls v+ vy Cisnn I < a
and predicate constants
Ro, Ry, ..., Ry, ... j < B.

Then a B-valued interpretation of % is a pair {4, ¢> where A4 is a nonempty
set and ¢ is a mapping defined on the set of constants of the language ¥
satisfying the following,

I. d(c)€e A, i < a.

2. #(R;): A — B, for j < B where n; is the number of arguments of R;.

Remark. In order to define a truth value for closed formulas of .Z under

a given B-valued interpretation we first extend % to a new language £* =

L(C(A)) by introducing new individual constants ¢, for each a € A4.

Definition 6.2. 1f ¢ is a closed formula of #* then [¢] is an elemen'g of
B defined recursively in the following way

L [Rey, . -5 0] 2 d(R)(¢(cy)s - . ., #(c,,)) for every finite sequence of
constants ¢y, .. ., ¢, of £* and ¢(c,) = a for the new constants c,, a € 4.

2. [—4] = [l

3. 0% A 1l = 4] ]

4. [ v nl = [ + [1].
VT = T ] el

acA

G = D [l

acd

W

(@)}
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Remark. For the special case B = 2, Definition 6.2 is the usual definition
of satisfaction in ordinary 2-valued logic.

We wili write [{(ay, . . ., a,)] for [i¥(ca,, . . ., ¢,,)], R; for ¢(R;) and ¢ for
é(c). If {4, ¢> is a B-valued interpretation then

Aé<A7EO’R1:~--7507611"‘>

is a B-valued structure.

We will occasionally consider several interpretations in the same context.
We will write [@], to indicate that element of B determined by ¢ and the
interpretation (A4, ¢> of the B-valued structure A.

Definition 6.3. Ak g3 o] = 1.

Remark. AF ¢ isread “A satisties ¢ or “p is true in A.”
The usual axioms of the predicate calculus are also valid in every B-valued
structure as we now show.

Theorem 6.4. If ¢ is a closed formula of the language ¥ then o is
satisfied in every B-valued structure iff ¢ is logically valid.

Proof. ¢ is logically valid iff ¢ is satisfied in every 2-valued structure.
Since 2 is a complete subalgebra of B every 2-valued structure is a B-valued
structure. Conversely if ¢ is not satisfied by some B-valued structure A i.e.,

[pla =b#1

then the computation of [¢] 5 requires only a finite number of applications of
Definition 6.2 (5), (6), say

b1= I_Iblas"'sbn= ana

acd; a€dn
’ ’ 4 !
b1= Zbla:”-:bm: z bna-
a€B; @By

By the Rasiowa-Sikorski Theorem (Theorem 2.14) there is a homomor-
phism /: |B| — |2| such that A(b) = 0 and h preserves sums and hence
products. If {4, ¢ is the B-valued interpretation that determines A and
¢’ 2 ho ¢ then (A4, ¢"> determines a 2-valued structure A’. Since 4 is a homo-
morphism that preserves sup’s and inf’s, and A(b) = 0, it follows that ¢ does
not hold in A’.

Exercises.

1. Let B,, B, be complete Boolean algebras and 4 a complete homo-
morphism of B, into B,. If {4, ¢,> is a By-interpretation, if ¢, = / o ¢, and
$2 = ¢, on the constants of & then (A4, ¢,> is a B,-interpretation and for
each closed formula ¢ of the language .

[[?’]]Az = h([[‘PHAl)

where A is the structure determined by <4, #,>.
2. Let P be a partial order structure, and B the complete Boolean algebra
of all regular open sets in P. If = is an automorphism of P then = induces an
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automorphism # of B. (=: P — P is an automorphism iff = is one-to-one and
onto.) If in addition

(¥p1, ps € P)(3n)[= is an automorphism of P A Comp (p,, #(p2))]
then

(Yby, by € B — {0}) (Am)[= is an automorphism of B A b,w(by) # 0].

Remark. We turn next to languages with equality. As in the 2-valued
case we have special axioms for equality that are easily generalized for the
B-valued case.

Definition 6.5. 1f % is a first order language with equality then by a
B-valued interpretation of . we mean a B-valued interpretation in the sense
of Definition 6.1 that in addition satisfies the following Axioms of Equality

[c=c] =1

fey = ca] = [ca = 1]

[e; = calllea = ¢3] < [er = ¢l

For each n-ary predicate constant R of the language

lev = cil - [en = Ry, - . -, )] < [Rey, - - -, el

Theorem 6.6. Every logically valid sentence of a first order language &
with equality is satisfied by a B-valued structure of #.
In particular

bl e

ﬂ:cl = c’lﬂ e Utcn = C;Lﬂ [['*P(Ch ey Cn)]] < [Iq)(c;’ ey C;L)D
Remark. Note that [¢; = ¢,] may be different from 0 and from 1. Also,

we may have [¢c; = ¢,] = 1 but ¢; # ¢,. To exclude this last possibility we
introduce the separated B-valued structures.

Definition 6.7. A B-valued structure A = {4, =, Ry,...,Cp,...> I8
separated iff

(Va,, as € A)[[a, = a3] = 1 —a, = a,].

Remark. Every B-valued structure A is equivalent to a separated B-
valued structure <A, =, Ry, ..., ¢y, ...> obtained from A by considering the
equivalence classes of the relation {(a, b> € 42 | [a = b] = 1}. If 4 is the set
of these equivalence classes there are B-valued relations , = R,,...,on A and
members ¢, ... of A (which are uniquely determined) such that for every
formula ¢ of ¥ and any a,,...,a,€ 4

[p(as, . ., ala = [@(dy, . . ., d)la
where &; is the equivalence class containing a;.

Definition 6.8. A partition of unity is an indexed family <b; | i I> of
elements of B such that
> bo=1n (Vi,jeDli # j—bb, = 0].
iel
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A B-valued structure A = {4, =, R,, ..., &, ...> is complete iff when-
ever {b; | i € I) is a partition of unity and {a; | i € I'> is any family of elements
of A then

(Fae ANVie Db < [a = a]l.
Remark. The set a, of Definition 6.8, is unique in the following sense.
Theorem 6.9. If (b, | i€ ) is a partition of unity, if
(Vie ){b; < [a = a]]
and
(Vie b, < [a’ = a]
then [a = d'] = 1.
Proof. b <la=alld =a] <Ja=4d],iel

1:%@51@:4]}51.

Hence @ = a'] = 1.

Remark. This unique a is sometimes denoted by >, b,a;. We next
provide an example of a B-valued structure that is separated and complete.

Example. Define A = (B, =) by
[6y = bo] = b1bs + (Tb)("hy)

i.e., [by = by] is the Boolean complement of the symmetric difference of b,
and b,.

It is easily proved that A is a B-valued structure that satisties 1-3 of
Definition 6.5. Since

by = bo] = 1—b1by + (Tb1)("hs) = 1
—>biby = “(Tb)("hy) = by + by
~>b1by = b, A byb, = b,
—by < by A by < by
— by = b,

A is separated.
If {b; | i e I) is a partition of unity and <a; | i € I> is a family of sets of B
then since B is complete
at Z ba; € B.
iel

Then

bla = a] = b, Z a;b; + bi(—ai)(_z a]-b,-)

jel jel

= (ab; + (‘ai)bi)(z ab; + —z ajbj)-
jel jel
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But the b;’s are pairwise disjoint. Then

(Ta)b; Z ab; = (Ca)ab; =0

jel

aibi(_z a,-b,-) = 0.
jel
Then

bla = a] = ab; + (Ta)b; = b,.

Therefore (Vie I)[b; < [a = a]] i.e., A is complete.
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7. Relative Constructibility

Godel’s constructibility was generalized, in a natural way, by Levy and
Shoenfield to a relative constructibility which assures us of the existence of a
standard transitive model L[a] of ZF for each set a. Levy-Shoenfield’s relative
constructibility is rather narrow but quite easily generalized. 1n this section
we will study a general theory of relative constructibility and deal with several
basic relative constructibilities as special cases. Later we will extend our
relative constructibility to Boolean valued relative constructibility from which
we will in turn define forcing.

There is a modern tendency to avoid the rather cumbersome theory of
relative constructibility. We believe this to be a mistake. Although we do not
pursue the subject, it is clear that one can consider wider and wider types
of relative constructibility. Accordingly, we have many types of Boolean
valued relative constructibility. We feel that these sometimes wild Boolean
valued relative constructibilities might be very important for future work.
Indeed, it is not at all clear whether the structures they produce can be con-
structed by the usual method of Scott-Solovay’s Boolean valued models
without using relative constructibility.

If a and b are sets there are two different definitions of the notion b is
constructible from @’ namely b € L, or b € L[a] where

L, is the smallest class M satisfying

1. M is a standard transitive model of ZF.
2. On < M.
3. (VxeM)[xnae M].

L[a] is the smallest class M satisfying

1. M is a standard transitive model of ZF.,
2.0n<c M.
3.ae M.

Obviously, L, < L[a].

In this section we will show, by a modification of Gédel’s methods used
to define the class L of constructible sets, that the classes L, and L[a] exist. Lt
should be noted that neither the characterization of L, nor of L[a] can be
formalized in ZF.

The main difference between L, and L[a] as we will see is that L, satisfies
the AC while L[a] need not. Since we will eventually wish to prove the
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independence of the AC from the axioms of ZF using results of this and later
sections we must exercise care to avoid the use of the AC in proving the
following results.

It is of interest to consider a slightly more general situation aillowing a to
be a proper class A. L, can be characterized exactly as L, was. For L[A4] there
is however a problem in that we cannot have A4 € M. Instead we define:

L[4] = | L[4 N R'4].
«elp

We first develop a general theory that allows us to treat L, and L[A]

simultaneously. Let % be a language with predicate constants

Ro, ..., R,
and individual constants
Cos -+ oy Cope

Some results of this section remain true if we allow .Z to have an arbitrary
well-ordered set (possible even uncountably many) of constants.

Definition 7.1. If A = (A, Ry™, ..., RA, ¢, ..., ™ and
B =(B R .. .,R" k..., ™

are two structures for the language &, then A is a substructure of B, (A < B)
iff

1. A < B.

2. Foreach R;,i =0,...,nif R;is p-ary then Va,,...,a,€ A4

RMay, ..., a,) < R"a,.. ., a,).
.er=¢" j=0,...,m

Exercise. 1f B = <(B, R,®, ..., R.®, c®, ..., c,™ is a structure for £ if
A < Band ¢;€ 4, < m, then there is a unique substructure A < B such that
|A| = A (]A] denotes the universe of A). This structure we denote by B [~ A.

Definition 7.2. C(A) = {c, | ae A}, L(C(A)) is the language obtained
from £ by adding ¢, for each a € 4 as new individual constants. & is always
understood to be the first order language whose only constant is €.

Remark. Hereafter we assume that R, = ¢, i.e., £ is an extension of
%,. We will be mostly interested in structures {4, €, . ..> where 4 is transitive.
In this case we do not list € explicitly. In particular we call a structure (M, &>
for %, transitive iff M is transitive and € = €. In this case we write M for
M, €.

For the following we assume a suitable Godelization of the formulas of
P(C(A)) in ZF and a formalization of several syntactical and semantical
notions meeting certain requirements on definability and absoluteness with
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respect to transitive models of ZF. In particular there is a formula F of .%,
involving A as a constant such that F(x) formalizes the notion

“x is the Godel number of a formula of £(C(4))”

and such that F'is absolute with respect to any transitive model M of ZF for
which 4 € M. We then define

Fml(A) £ {x | F(x)}.

C(x): “x is the Godel number of a closed wff of L(C(A4)).”

F(x): “xis the Gddel number of a wff of Z(C(4)) having at most one free
variable.”

FmI%(A) £ {x | C(x)}.

FmiIY(A) £ {x | F(x)}.

Definition 7.3. A class A is definable in %, iff there is a formula g(x) of
%, containing no free variable other than x such that 4 = {x | ¢(x)}. In this
case ¢ is called a defining formula for A. Moreover, if ¢ contains parameters
Y1, ..., ¥, from a given set ¢ then we say 4 is definable in %, from c.

Definition 7.4. Let M be a standard transitive model of ZF and let
@(x1, ..., x,) be a formula of % containing no free variable other than
X1, ..., X,. Then g is absolute with respect to M iff

x5, .. X € M)[p(xy, . ooy X)) < @™M(xy, .., X)),

where ¢ is the formula obtained from ¢ by replacing 3y and Vy by 3y e M
and Vy e M respectively. Moreover if ¢ contains a set c € M, @(c, x4, . . ., X,),
then we say that ¢ is absolute with respect to M regarding c as a constant.

A class 4 definable in %, is absolute with respect to M iff its defining
formula is absolute with respect to M.

Theorem 7.5. IfA = <A, Ry, ..., R, &, ..., ¢, is a transitive structure
for &, where A is a set, then there is a wif ¢ of .%, such that for every closed
wif @ of L(C(4))

AF g < (A, Toh).

Furthermore if M is a standard transitive model of ZF and A € M then ¢ is
absolute with respect to M (regarding A as a constant).

Remark. Since we did not formalize explicitly all of the necessary syn-
tactical notions we can only give an outline of a proof.

We define a formula ,(f, A) in the language %, that formalizes the notion

*“fis the characteristic function of the closed wiTs of #(C(4)) that are true

in A”
1.e., $o(f, A) is the conjunction of the following formulas:

L. /2 Fmi%A) — 2.

2. Vi [f(T—¢") = 1 < f("g") = 0].

3. VoWV [[f(Tpr A @3) = 1 < f(Tp) = 1 A f(Tpa) = 1]

AT Voga)) = 1< f(Tp) = 1 v f(Tey!) = 1]].
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4. VIVX)p(P [f((V)p(x)) = | = (Vae A)[f(Te(ca)) = L]].

5. VI@Ex)e() [f((E)p(x)) = 1 < (Fa e )/ (e(c)) = 1]].

6. (Va, € A)Vas € A)[f(Tcg, €¢o,)) = | <> a; €a,).

7. (Yay € A) - - - (Ya, € Af(Rcays - . ., €0, ))) = 1 <= Riay, . . ., an).

for each predicate symbol R; (except €) where n, is the number of argument
places of R;. (For simplicity we assume that % has no individual constants.)
Here Tg' is to range over Fm/°(A) which is a set, since A4 is a set. "(Vx)p(x)!
in 4 ranges over all (G6del numbers of) closed formulas of £(C(A4)), that
are of the form (Vx)e(x). In 4 we also assume a suitable formalization of
substitution. Since Fmi°(A) is a set we can prove the following in ZF.

Theorem 7.6.

AF e < (Vlbo(f, A) = f(Te") = 1]
< @Nlo(f; A) A ST = 1]

Remark. Thus if
b (A4, TSN, A) —f(Te") = 1]

then
AF - (4, )

Futhermore, let M be a standard transitive model of ZF with A € M. Then
Jo(f, A) is absolute with respect to M since Fml°(A) € M and all quantifiers in
1-7 of the definition of #,(f, A) can be restricted to M. It then follows
that (A, x) is absolute with respect to M. (See Theorem 13.8, GTM Vol. 1.)

If we allow 4 to be a class then Theorem 7.5 no longer holds
tor otherwise we would obtain a truth definition for ¥ definable in the lan-
guage of ZF. 4,(f, A) can still be defined as above even if 4 is a proper class,
however, in this case f is a class variable. Consequently we would have a
bound second order variable in Theorem 7.6.

In the language of G&del-Bernays (GB) set theory AF ¢ can be defined
by Theorem 7.6 however we cannot prove in GB that it has the desired prop-
erties unless we assume some further axioms, e.g., mathematical induction
or the comprehension axiom for formulas involving bound class variables.

Later we will encounter a similar situation when considering the de-
finability of forcing for unlimited formulas. On the other hand we can prove
the following theorem in ZF.

Theorem 7.7. If A is a class then for each formula ¢ of ¥ with free
variables ay, . . ., a, there is a formula ¢ of %, for which

(Vay,...,ace A[AFpas, ..., a) < (4, a,. .., a)l
Proof. Foreachay,...,a,€4
AF‘P(ala sy ak) <_>(F—’(al5 cery ak)

where &(ai, . . ., a.) is p*(ay, . . ., a,) Wwith each occurrence of R, replaced by
R; and each occurrence of ¢, replaced by ¢;.
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Remark. As mentioned above, in the general case where 4 may be a
proper class we do not have a single formula ¢ of %, such that Theorem 7.7
holds simultaneously for all formulas of .%, ( having a further argument
Te"). This result can however be obtained if we restrict ourselves to formulas
@ with less than # quantifiers, where # is a fixed natural number.

Definition 7.8. If A is a set then
Df(A) = {a | Ip(x)! € FmI*(A)la = {x e 4 | Ak p(x)}]}.

Remark. Df(A) is the set of sets definable from A (using elements from
A as parameters). Here we need Theorem 7.6 to show that {x € 4 | AF ¢(x)}
is a set in ZF.

Taking ¢(x) as x = x we obtain the following.

Theorem 7.9. A4 € Df(A) provided A4 is a set.

Theorem 7.10. If A4 is a set then Df(A) is a set definable in .%, from A. If,
in addition, M is a standard transitive model of ZF and A € M then Df(A) is
absolute with respect to M.

Remark. For our general theory let <M, | « € On) be a sequence of
transitive structures of % such that M, = |M,]| is a set and the following
three conditions are satisfied:

l. & < B— M, is a substructure of M.

2. M, =) My, ceky

B<a

3. DfM,) € M,y,.
M=) M, M=<IMRM.. ..
aeOn
Remark. Since each M,, « € On, is transitive, so is M. Moreover RM is
defined by

RMa,, ..., a,) < RM(ay,...,a,),ay,...,a,, € M,

In view of 1 this definition is unambiguous. Furthermore M, < M for each
a € On.
We now wish to prove that M is a standard transitive model of ZF.

Theorem 7.11.
1. Mye M, ..
2. M, e M.

Proof. Theorems 7.9 and 3 above.

Remark. Since M is transitive, M satisfies the axioms of extensionality
and regularity. It is easy to check that the axioms of Pairing and Union
hold in M. Since « € M,.;, On = M and w € M. Therefore M satisfies the
Axiom of Infinity.
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The main idea used for the proof of the remaining axioms is contained in
the proof of the following proposition.

Theorem 7.12. a < M — (a)[a = M,].
Proof. From the Axiom Schema of Replacement it follows that
G« = mixe M)
then a = M,.

Remark. In order to prove the Axiom of Separation in M we first prove
a kind of reflection principle in M. This proof requires several preliminary
results.

Definition 7.13. A function F: On — On is semi-normal iff

1. (Vo)la < F(o)].
2. (Vo, Bl < B— F(a) < F(B)].

3. (Yae KH)[F(a) = F(ﬁ)].
B<a
Definition 7.14. A function F: On — On is a normal function iff
I. (Vo, B)[e < B— F(a) < F(B)].
2. Vae KH)[F(a) = F(,e)}.
B<a

Remark. Every normal function is a strictly monotonic ordinal function.
Since we have o < F(e) for every strictly monotonic ordinal function it
follows that every normal function is also semi-normal.

Theorem 7.15. If F,, ..., F, are semi-normal functions then
(V)38 > o) = Fi(B) = - - - = Fu(B)].
Proof. We define an w-sequence {e,, | m € w) by recursion:
oy =a+ 1, e = Fi(ay), ..., 05401 = Fo(a,)
oy = Fi(ew),i=k(modn),i=1,...,n

If B = Umeo @n then « < B and the sequence <«, | m € w) is nondecreasing.
IffekKthenmew,B = o, = «,,., = ---, and hence

B=FiB) == Fyp).
If B € K;; then

Fi(B) = ) Fi(a)

= :U:{ak” | i = k(mod n)}(= g akn+i+1)
=B
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Theorem 7.16. If ¢(ay, ..., a,) is a formula of & then
Vo)(3B = a)(Yay, ..., a, € M)ME 3x)p(x, ai, ..., a,) <
(Hae My)[MEp(a,ay, ..., a,)]
Proof. By Theorem 7.7.
MEg(a, ay,...,a,)

is expressible by a formula of .%,. Using the fact that M, is a set we can then
define

B= sup wup(B =z oA (FaeMy)[MFo(a,a,...,a)).

A1seerAn€EMy
This 8 has the desired properties.

Theorem 7.17. For each formula ¢(ay, . . ., a,) of £ there exists a semi-
normal function F such that

(Ve)(VB)[B = F(e) > (Vay, ..., a,€ M)ME 3x)p(x, ay, . .., a,) <
(3a e My)IME ¢(a, ay, . . ., a,)ll].

Proof. From Theorem 7.16

@3B = «)(Vay, ..., a, € MH)ME @x)p(x, ay, . . ., a,) <
(Hae My)ME @(a, ay, . . ., a,)]]

therefore if

F(o) = ps(B = o A (Vay, ..., a,€ M)H)ME @x)p(x, ay, . . ., a,) <
(Ha € Mﬂ)[MI: (P(as Ay, ..., an)]])

then « < F(a). Furthermore F is nondecreasing and continuous hence semi-
normal.

Corollary 7.18. For each formula ¢(ao, . . ., a,) of &£ there exists a semi-
normal function F such that

(VBB = F(B) — (Vay, . . ., ane Mp)[MF (Ax)p(x, @y, . . ., @)] <
(Fa e M)ME ¢(a, ai, . . ., a,)]].

Theorem 7.19. For each formula ¢(a,,..., a,) of & there are finitely
many semi-normal functions Fy, . .., £, such that

(Vﬂ)[ﬁ = FI(B) == m(lB) e (Vah <o 4y € Mﬁ)[M}: ‘P(al: B an) -~
M;Eo(ay, ..., a)]l

Proof. (By induction on the number of logical symbols in ¢.) If ¢ is
atomic the theorem follows from the fact that (Ve)[M, & M]. If ¢ is of the
form —¢ or s A m the conclusion is obvious. If ¢(ay, ..., a,) is of the form
(3x)y(x, ay, . . ., a,), then from the induction hypothesis there are semi-normal
functions Fj, ..., F, such that

IB = Fl(ﬂ) == m(ﬁ)‘%(vam“ . anEMﬁ)[MFl/I(a(J:"'a an)e
M, E (ag, - . ., @)l
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By Corollary 7.18 there exists a semi-normal function F, such that

B = Fo(B) = (Vay, ..., a,e M)[ME @x)(x, ay, ..., a,) =
(3ae M)MEY(a, ay, ..., a)ll.

Therefore if B = Fo(f) = --- = F(B), and a4, .. ., a, € My then

MFg(ay, ..., a,) < 3Fae My)IMEY(a, a,, ..., a,)]
<~ (Jae MH)[MzE¥(a, ay, . . ., a,)]
<~ M,k (3x)(x, a5, . . ., a,)
<~ MzEop(ay,...,a,).

Corollary 7.20. For each formula ¢(ay, . . ., a,) of &
(Ve)3B)B = « A (Vau, ..., a,€ Mp)IMF play, . . ., a,) < MzF g(ay, . . ., a,)].

Remark. From Corollary 7.20 we can easily prove that M satisfies the
remaining axioms of ZF.

Theorem 7.21. M satisfies the Axiom of Separation.
Proof. 1fe(x,y:,...,y)isaformulaof #,ifa,a,,...,a,€ M, and if
A2 aU{a,ay, ..., a,}
then A is a subset of M. Thus (I«)[4 = M,]. By Corollary 7.20

3Bz o) VbeMy)MEbea A plb,ay,...,a,) <
MyEbea A @b, ay,...,a,)l}

Then

{x | MExea A o(x,ay,...,a,)}
={xeMy; | MyExeca A ¢(x,a,...,a,)}-

Consequently
{x | MExea A p(x,ay,...,a,)}e Df(My) € My & M.
Theorem 7.22. M satisfies the Power Set Axiom.
Proof. 1f ae M then #(a) N M is a subset of M. Hence
FA)[P@ N M < M, e M).

Since, by Theorem 7.21, M satisfies the Axiom of Separation and M, € M it
follows that Z(a) N M is an element of M.

Theorem 7.23. M satisfies the Axiom Schema of Replacement.

Proof. Ifelay,...,a,)isa fprmula of & such that
(Vag, .. .,a,e MY(Vxe M)3 ! ye M)[ME ¢(x, y, as, . . ., a,)}
ifae M, and

ci {re M| (Axea)[MEo(x, y,as,...,a,)]}
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then C is a subset of M. Thus

(F)[C = M, e M].
Then by Theorem 7.21
C=CnM,eM.

Remark. We have established that M is a standard transitive model of
ZF that contains all of the ordinals. The method by which M was constructed
is of particular interest. M was defined from a sequence <M, | « € On> of
transitive structures satisfying the conditions 1-3 of page 68. We next consider
two applications of this same general method.

Definition 7.24. If K is a class, if L({K()}) is the language obtained
from %, by adding a unary predicate symbol K( ) and if (A, | «€ On) is a
sequence of structure A, = {4,, K,> defined by transfinite induction on « by

A, 20
K. 2 4,nK
Ausr = Df(AL)

Aa é U Aﬂ, CXEKH,

B<a
then

Le & U A

aeOn

Remark. 1t can then be easily shown that A, satisfies the conditions 1-3
of page 68. From this, as before, we can prove the following theorem.

Theorem 7.25. Ly is a transitive model of ZF and On < L.

Remark. Definability in Z,({K( )}) for classes is defined in the same way
as in Definition 7.3.

Theorem 7.26.

1. Lg is definable in Z({K( )}).
2. aely—an KelLg.
3. MK)* KN Lgely.

Proof. 1. Obvious from Theorem 7.10 and the definition of Lg.
2. If ae Ly then (3x)(a € 4,). Therefore a <€ A, and an K < K, < A,.
Then aN K = {xe A, | {Aq, KD Ex€cy A K(x)} where a€ 4, ie.,

an Ke Df(A,) = A, S Lg.
3. If Kisasetand kg = K N Ly then k, is a subset of A, for some «. Then
ko = {x € Ag | (Ao, K> F K(x)} € Df(As) = Aesa
and hence kg € Ly.

* #(K) means “K is a set.”
72



Remark. Wesay M is a standard transitive model of ZF in the language
Z({K()}) if the following conditions are satisfied:

1. M is transitive.

2. There is a class K € M such that (Vxe M)[x " Ke M].

3. M satisfies the axioms of ZF described in the language Z,({K( )}) by
interpreting K( ) by K.

Let M be such a model and let p(xy, .. ., x,) be a formula of FLH{K( )})
containing no free variables other than x,, ..., x,. Then ¢ is absolute with
respect to M iff

(v-xla s Xp € M)[<P(X1, R} xn) -~ ‘PM(xb LR xn)]
Note that in making ¢ from @ the symbol K, if it occurs in ¢, is left invariant.

Theorem 7.27. If M is a standard transitive model of ZF in the
language Z,({K( )}) and if On < M, then L, < M.

Proof. We prove by induction that A,€ M. Clearly 4y = 0e M. If
A,eM then K, = A, Ke M, hence A, = {A,, K,> € M. By Theorem
7.10, Df(A,) is absolute with respect to M. Therefore 4,,; < M. But 4 a set
implies that Df(A) is a set. Therefore Df(A,) € M, i.e.,

Agr1E M.

If @€ K;; and VB < «, A; € M then since the sequence {A4; | B < ) is
definable in M*,
Ao = J Ase M.

Bea

Then Ly < M, since M is transitive.

Theorem 7.28. If K, = KN Ly

1. Ly = Lg, A Ky S Lg, (Therefore Ky € Ly if K, is a set).
2. Lg FV = Lg,
3. Lg,k AC.

Proof. 1. A,NKy=A,NKNLgy=A,NK, since 4, = Lg. There-
fore Ly = Ly, and Ky S Ly = Lg,.

2. If A, = (A, Ko is A, = {A,, K, relativized to Ly, then we prove by
induction on « that A, = A,. Obviously A; = A,. If A, = A, then A, € Lg,
and L, is a transitive model of ZF. Therefore

A:H-l = Df(Aa) = Aoz+1

since K, = K, we have K.,, = K, 1. The case « € Ky; is obvious.
3. We first prove in ZF that if a is well ordered then a' = Df(<a, k)) is
well ordered.

* A class A(< M) is definable in M iff there is a formula ¢(x) of L({K()}) containing
no free variables other than x such that 4 = {xeM|p¥(x)}.
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If b € &’ then there is a formula ¢ of L({K( )}) and a finite set of constants
{c1, ..., cny € a for which

b=1{xeal|la, kdFolx,ci,...,C)}

Thus b is determined by <T@'*, {cy,..., c,}>. The set of formulas of
Z({K( )}) is countable and the finite subsets of constants from a can be well
ordered since a is well ordered. This gives a well ordering of a’.

Since Ly, is a model of ZF it then follows from the foregoing argument
that 4, , is well ordered in Ly, if A, is well ordered in L. Thus by induction
on o there are relations <, in Ly, such that <, well orders A<, is
definable uniformly for all « in Lg,).

If Od(a) £ polac A,), ae Ly and if

a<b<aely, ANbeLg A[Od(a) < 0d(b) v
[Od(a) = 0d(b) A a < o4 b]]

then < is a well ordering of Ly, that is definable in Lk . In particular each
a € Ly, is well ordered by {{x,y> | x < y A x,yea}e Ly,

Corollary 7.29. If there exists a standard transitive model of ZF then
there exists a standard transitive model of ZF + AC + V = L,.

Exercise. Show that L, is Gédel’s class of constructible sets.

Remark. In Introduction to Axiomatic Set Theory we proved that
V = L, implies the GCH. We now wish to prove a corresponding result
namely V = L, — GCH. For this proof we require the following.

Definition 7.30. 1. If A is a structure and ¢(aq, 4y, - . ., a,) is a formula
in the language of A, then a function f: 4" — A is a Skolem function for
(3x)e(x, ay, . . ., a,) with respect to A iff

(vxl’ cees X € A)[AF (ax)‘P(X, X150 s xn) -~ Ak: (p(f.(xly R} xn)9 X150 xn)]-

2. B is an elementary substructure of A (written B < A) iff B is a sub-
structure of A and for every formula ¢ of the language of A i.e., Z(C(4)), and
Ya,,...,a,€B

BFog(a;,...,a,) < Ak glas, ..., a,).

Remark. We next show how to obtain an elementary substructure of A
that contains a given subset of 4, provided that we have a family of Skolem
functions for all formulas of the language of A.

Theorem 7.31. If A is a structure and F a set of’ Skolem functions such
that for every formula (3x)p(x, ay, . . ., a,) of the language of A there exists
in F a Skolem function for that formula with respect to A, if B < 4 and if B
is closed under the functions of F then B = A [ B is an elementary sub-
structure of A.

* Tpl is the Godel number of ¢.
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Proof. By induction on the number of logical symbols in ¢. If ¢ is atomic
or of the form —y or ¢ A % the conclusion is obvious. If ¢(ay, ..., a,) is
A@x)(x, ay, ..., a,) and if by, ..., b, € B then

BE 3x)d(x, by, ..., b,) — 3be B)[BEY(b, by, ..., b,)]
— (3be B)[AE (b, by, ..., b,)]
— AF @x)(x, by, ..., by)

—@fe FO)AFY(f(by, ..., b, by, ..., by)]
—(3x € BY[AE4(x, bry - . ., b)]
— BE (3x)(x, by, - . ., by).

Lemma. If A is a set, and if
x,yed[x#y—>FzeA) - [zexzey]]
then there exists a transitive set g and a function fsuch that
fi A4 %;—“1)—» a
and (Vx, y € A)[x € y < f(x) € f(»)]. Moreover if b is a transitive subset of A4

then f b =11 b.*
Proof. We define frecursively by

f) ={/(x)| xe 4y}

The conclusion is then immediate from the definition of f, that is,

(Vx, y e A)lx e y = f(x) € f(»)].

Also, by e-induction, it follows that if 5 is a transitive subset of A then
f T b = I b.(For details see Takeuti and Zaring: Introduction to Axiomatic
Set Theory, Springer-Verlag, 1971, p. 19.)

Remark. In the foregoing Lemma both fand a are unique.

Theorem 7.32. If A is a transitive set, if k € 4 and if {4, €, k) is a model
of ZF + V = L, then (3a)[4 = A,] where A, is as in Definition 7.24.

Proof. Since L, = Uqseon A« and A, is absolute with respect to A
for each «€ A N On, A = Ugeanon Ao Furthermore, because A is transitive,
ANOn = Uges 2 B. Therefore since A4 is a model of ZF, § € Ky; and hence

A=A, = 4,
aef
Theorem 7.33. If k, is the transitive closure of k then
V=L, (Va)[ky < Ry~ 2% = X, ,].

Proof. If V =L, then k€ L,. Let F be a countable family of Skolem
functions, with respect to Ly, for all formulas of the language Z,({k( )}).
Ifa € Ne, ky < X, and

b2 {aUR, Uk {k}

T2 (x> | xe VL T b (e, y>eflxeb)
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then b is transitive and b = X,. Let 4 be the closure of b under all of the
functions in F. Then 4 = b = X, and, by Theorem 7.31

(A, e, k>EZF + V = L,.

From the Lemma there exists a transitive set a, and a function ffrom A4 one-
to-one onto a, such that f preserves the e-relation. Since b is a transitive
subset of A4, fis the identity function on b, in particular f(k) = k. Therefore
{ag, €, k)FZF + V = L,. By Theorem 7.32

(@B)lao = Ag].

But @, = 4 = X,. Hence 8 < X, i.e., B < X,,,. Since a = fla) ef“A4 = ay,
this proves that (Va = R,)3B < R, )[a € 4;]. Therefore

g(xu) s A-\ia+1'
But Ay, ,, = N,y ;. Hence Z(X,) = X, ,.

Remark. Note that V = L, can be expressed as a simple sentence
V = Ugeon A, in the language Z({k( )}). To prove the preceding theorem
assuming the axioms of ZF and V = L, we note that in fact we used only
finitely many axioms ¢q, . . ., @,. Let F, be the family of Skolem functions for
the finitely many subformulas of ¢, ..., ¢,. Then F, can be defined in the
language of ZF. The proof can then be carried out with F replaced by F,.

As a corollary we have V' = L — GCH and hence the following theorem.

Theorem 7.34. If there exists a standard transitive model of ZF then
there exists a standard transitive model of ZF + AC + GCH.

Remark. For our second application of our general theory we define
L[A].

Definition7.35. If Kis a transitive class, if F< K, if & = Z2({K( ), F()))
and if B, = <{B,, K,, F,) are structures for .# defined recursively by
o = 0.
2 R@)NKAF,=RNF
a+1 é‘ Df(Ba) U I?a+1-
. £ U B, a€ Ki;

Bea

ol e
% X

oy

then
LIK; F1= | B.
ae0On
Remark. Since K is transitive, B, is transitive for each «. Then
(B, | « € On) satisfies the conditions 1-3 of page 68. Consequently we can
prove the following

Theorem 7.36. L[K; F] is a standard transitive model of ZF and
On < L[K; F].
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Definition 7.37. 1. L[F] 2 L[K,; F] where K, is the transitive closure
of F.
2. If M is a standard transitive model of ZF, On = M, and F < M then

MI[F] £ L[M; F).

Theorem 7.38. 1. L[K; F] and L[F] are definable in ZL,({K(), F( )})
and Z,({F( )}) respectively.

2. aelLld].
3. LIK] = | LIK U R@)]

aeOn

Proof. 1. Similar to Theorem 7.10 for a language with constants K ( )
and F( ).

2. If « = rank(a) then @ = R(«). Therefore F, = a and hence
ae Df(B,) = By

3. For each v it is easily shown by transfinite induction on « that
B.(y) = L[K], where L[K N R(y)] = Ugeon Bo(y). Conversely, if ae L[K]
(3a)a € B,). But for each « there is a y(=«) such that B, < L[K N R(y)].
Therefore

ae () LIKN R@)].

aeon

Theorem 7.39. If M is a standard transitive model of ZF in the lan-
guage Zy({a( )}) such that

I.Oncs M,
2.ae M,

then L[a] € M.

Proof. If aq is the transitive closure of a then since ae M and M is a
model of ZF, a, € M and q, is the transitive closure of a in M. Since M is
transitive a < M and a, = M. Also since the rank function is absolute with
respect to standard transitive models of ZF, [R(e) N a]® = Rle)"N M Na =
R(x) N a.

Then

(Y € On)[K,, F, e M].

Clearly B, € M. If B, € M then Df(B,) € M and hence B,,, € M. Thus by
transfinite induction

(Ve € On)[B, € M].
Therefore L[a] = M.
Theorem 7.40. If g has a well ordering in L[a] then L[a] satisfies the AC.

Proof. The proof is similar to that of Theorem 7.28 and is left to the
reader.
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Theorem 7.41.

l.ac L—L, = Lla].
2. LlalE V = La).

Proof. 1. If a< L then a € L, since L € L,. Therefore a € L,. Since
L[a] is the least standard transitive model of ZF that contains a and all the
ordinals as elements we have L{a] < L,.

But, since a € L[a].

(Vx € Lla))[x N a € L[a]].
Therefore L, < L[a].
2. The proof is left to the reader.

Exercises. 1. If M is a standard transitive model of ZF, On< M, and
a< M then Ma] is the smallest standard transitive model N of ZF in the
language Z,({M( ), C,}) such that (i) M < N and (ii) a € N.

2. If M is a standard transitive model of ZF,On< M, K< M and
L =L({M(), K()}) we define C = (C,, M,, K,> and M, by recursion:

1) Cq = 0.
i) M, = M N R(), K, = C, N K.
“1) CLZ+1 = Df(ca) v Ma-{-l v Ea-

iV) Ca = U CB’ S KII-

B<a

v) My = | C..

aeOn

Then My = MIK].
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8. Relative Constructibility and Ramified Languages

Using a ramified language we shall give another definition of L[K; F]
a definition that has many applications since it only uses the concepts of
ordinal number and transfinite induction. On the other hand, to carry out the
actual induction steps may become rather complicated in particular cases
where definitions by simultaneous recursion are involved.

The symbols of the ramified language R(K, F) are the following.

Variables: xq, X1,..., Xp,-.. HEwW (unranked).
X%, X% ..., X% ... HnEw,a€On (ranked).

Predicate constants: €, K( ),F( ).

Individual constants: k for each k € K, where K is a given class.
Logical symbols: —, A, V.

Abstraction operator: X,%

Parentheses: (, ).

Definition 8.1. Limited formulas and abstraction terms are defined
simultaneously by the following recursion.

1. If each of t,, ¢, is either an individual constant, a ranked variable, or an
abstraction term then

F(ty), K(ty), L€l

are limited formulas.

2. If » and ¢ are limited formulas then —¢, and @ A ¢ are limited
formulas.

3. If o(x%) is a limited formula that does not contain x* as a bound
variable then (Vx®)@(x?) is a limited formula.

4. If o(x%) is a limited formula satisfying the following,

. @(x%) contains no free variables other than x¢,

. if k is an individual constant occurring in ¢(x%) then rank (k) < o,
if an abstraction term *£4(x?) occurs in ¢(x*) then 8 < «,

. if a quantifier Vy# occurs in ¢(x%) then B8 < «,

then £%p(x%) is an abstraction term.

oo o

5. A formula is a limited formula iff its being so is deducible from 1-4. An
expression is an abstraction term, iff its being so is deducible from 1-4.
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Remark. The requirements for ¢ in 4 are chosen to assure that sets are
built up in a predicative way (disregarding the constants k € K) i.e., if a set
b is determined by @(x%), (1) ¢ should not contain any free variables other
than x%, (2) any individual constant occurring in ¢ should be of rank less than
«, (3) any set occurring in ¢ as a constant should already be defined at a
previous level, and finally (4) ¢ should contain no quantification over levels
to which it itself belongs. One might also think of x* as ranging over
B, (Definition 7.35) therefore #%¢(x*) should be an element of B,.; =
Df(B,) U K, , which provides another motivation for the conditions in 4.

Definition 8.2. A constant term is either an individual constant or an
abstraction term. We define the rank p of a constant term:

p(k) £ rank (k) keKk.
p(£p(x%) = .
T, 2 {t]tis a constant term and p(¢) < «}.

T=|JT.

aeOn

Definition 8.3. Unlimited formulas of R(K, F) (or simply formulas of
R(K, F)) are defined as follows.

1. Ifeach of 1, and ¢, is a constant term or a variable, then K(¢,), F(¢,), and
t, € t, are unlimited formulas.

2. If ¢ and ¢ are unlimited formulas, then —¢ and ¢ A # are unlimited
formulas.

3. If @(x) is an unlimited formula in which x is a variable, ranked or un-
ranked, that does not occur as a bound variable in ¢, then (Vx)p(x) is an
unlimited formula.

4. A formula is unlimited iff its being so is deducible from 1-3.

Remark. For induction on limited formulas we need the following
notions:

Definition 8.4. Let ¢ be a limited sentence and ¢, ¢, be constant terms.

1. The grade g of a constant term ¢ or of a quantified ranked variable
Vx® is defined by

g(t) = 2p(1) + 2
g(Vx%) = 20 + 1.

2. Ord! () is the maximum of g(¢) and g(Vx®) for all # and Vx* that occur
in e.

3. Ord? (¢) = 0 if ¢ has no subformulas of the form ¢, € ¢, where g(¢) =
Ord! (p) and 'no subformula K(¢) nor subformula F(¢) where ¢ is a constant
term and g(¢) = Ord! (p).

Ord? (p) = 1 otherwise.
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4. Ord?® (¢) is the length of ¢ i.e., the number of logical symbols in ¢
where atomic formulas 7, € 15, K(¢), F(¢t) are assigned length 1.
5. Ord (¢) = w?-0rd* (p) + w-0Ord? (p) + Ord® (p).

Remark. WNote that Ord? (p) and Ord?® (@) are natural numbers. Proof by
induction on Ord () is illustrated by the following in which P( ) stands for
K()or F().

Theorem 8.5. If¢is aterm in ¢ such that Ord? (p) = g(¢) then ¢ does not
occur in any other abstraction term of ¢.

Proof. 1ft; = £%(x%) is an abstraction term such that ¢ occurs in ¢; and
t; occurs in @, then ¢ occurs in ¥(x*). Hence by Definition 8.4,

g(t) = 20 + 2 < Ord! (p).

If t = k for some k € K then rank (k) = p(k) < a.
If t = PAU(p*®) with B < o then g(t) < 2« + 1 < Ord! (o).

So if t occurs in an abstraction term of ¢ then Ord(p) > g(¢).

Remark. Thus any term of maximal grade occurring in ¢ cannot occur
within another term of ¢. We shall use this result frequently in proofs to
follow.

Theorem 8.6. e T,— Ord (p(1)) < Ord ((Vx*)p(x%)).
Proof. 1f t € T, then p(t) < «. Hence
g(t) < 2a + 1 = g(Vx*).
Therefore
Ord* (p(#)) < Ord* ((Vx*)p(x*)).
We then need only consider the case
o £ Ord? (p(1)) = Ord* ((Vx*)p(x)).
Clearly,
Ord?® (p(t)) < Ord® ((Vx*)e(x*)).

If Ord?(p(¢)) = 0 then Ord? (p(z)) < Ord? (Vx*)p(x*)) and hence
Ord (p) < Ord ((Vx*)p(x%)).
If Ord? (p(¢)) = 1 then for some ¢4, ¢,
t, €ty or P(t;) occurs in ¢(¢) and g(t,) = a.

Since g(t) < g(Vx%) ¢ does not have maximal grade. Therefore ¢, is not ¢ and
t, does not occur in . Therefore ¢, € £, or ¢, € x* or P(¢;) occurs in (Yx*)e(x%).
Since Ord* ((Vx%)p(x*)) = Ord® (e(t)) we have

Ord? (Vx¥)e(x%) = 1
hence
Ord (p(2)) < Ord ((Vx¥)p(x*)).
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Definition 8.7.
Loty S (VXP[XP €t & xP e ], B = max (p(ty), p(t)).

Remark. t; ~ t, is defined by a limited formula whereas t; = £, is an
unlimited formula.

Theorem 8.8. 1, eT,— Ord (r = t;) < Ord (¢ € 2%p(x%)).
Proof. 1If t; € T, we obtain, as in the proof of Theorem 8.6
Ord* (r ~ t,) < Ord?* (¢ € X%p(x%)).
Again we need only consider the case
wp = Ord! (1 ~ 1,) = Ord* (¢ € L%(x%)).

Then o = max (g(1), g(*%p(x*)) = max (g(?), g(t1)) = g(t), since t, € T, —
o(1,) < g(2%p(x%)). Therefore Ord* (¢ € £%p(x%)) = g(¢) and hence

Ord? (t € %(x*)) = 1.

On the other hand since ay = Ord! (t ~ 1;) = g(¢) and g(¢) # g(Vx*) =28 + 1
where B = max (p(1), p(11)),

Ord?2(t = t,) = 0.
Therefore
Ord (t = t,) < Ord (¢ € £%p(x)).
Theorem 8.9. e T, — Ord (p(¢)) < Ord (1 € £%p(x%)).

Proof. 1f t €T, then p(t) < «. Therefore since ¥%p(x®) is an abstraction
term and hence ¢ must satisfy 4 of Definition 8.1,

Ord" (p(1)) < g(X*p(x).
Hence
Ord? (p(1)) < Ord! (1 € X%p(x%))
and
Ord (g(2)) < Ord (z € £%(x%)).
Theorem 8.10.
rank (k;) < rank (ko) — Ord (¢ ~ k,) < Ord (1 € k»).
Proof. 1If rank (k,) < rank (k) then
Ord" (¢ ~ k,) = max (g(+), g(k1)) < max (g(1), g(k2)) = Ord" (7 < k»).
If

wo = Ord! (f ~ k,) = Ord! (1€ k,)
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then «, = g(t) since rank (k,) < rank (k). Therefore
Ord?(tek,) = 1.
But
Ord? (¢t ~ k;) = 0.
Hence
Ord (t ~ k,) < Ord (¢t € ky).
Theorem 8.11. rank (k) < p(¢) — Ord (¢ =~ k) < Ord (P(2)).
Proof. Ord' (P(1)) = g(¢) = Ord! (¢ ~ k), since rank (k) < p(2).
Ord? (P(t)) = 1
But
Ord? (t ~ k) = 0.
Hence
Ord (t ~ k) < Ord (P(1)).
Definition 8.12. If ¢ is a term then
ord* (1) 2 g(r), Ord*(1) 20, Ord®(t)20, Ord(r) = w?-g)

Theorem 8.13.

1. Ord (r) < Ord (P(1))
2. max (Ord (#,), Ord (¢5)) < Ord (¢, € t3).

Remark. The preceding theorems provide a basis for the definition of a
denotation operator D defined on terms and closed limited formulas. The
definition is by recursion on Ord (¢) and Ord (p).

Definition 8.14

1. D(k) 2 k, keK.
2. D(#p(x%) = {D(1) | te T, A D(@(t))}.
3. D(—p) & = D(g).
4. D(@ A )< Dip) A D).
5. D((Vx®)p(x%)) < (V1 € Ty) D(p(1)).
6. D(t, € 1,) & D(1,) € D(t), ty, ta €T
DK(1) & D(t)e K, teT
D(F(t)) & D(t)e F,teT.
Remark. More exactly D should be defined on f¢' and D restricted to
closed limited formulas fg! should be regarded as a function onto 2. It should

be noted that this recursive definition is permissible since 7, and the class of
closed limited formulas ¢ such that Ord (¢) < « are sets.
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Theorem 8.15. D is definable in Z,(K( ), F()).

Definition 3.16. D can be extended to an operator D defined for all
closed unlimited formulas of R(K, F) by adding

D((VX)p(x)) <> (Yt € T) D(g(t)).

Remark. Since T is a proper class, D is no longer definable in the lan-
guage Z,(K( ), F( )), simultaneously for all unlimited formulas. As in the case
of truth definitions D(p) is definable in Zy(K( ), F( )) for any particular
formula @ or indeed for any set of formulas ¢ with less than n quantifiers, n a
fixed natural number,

Finally we relate the method of this section with the concepts introduced
in §7 by proving the following theorem.

Theorem 8.17. L[K; F] = {D(t) | t € T} where F = Kand K is transitive.
Remark. For the proof we need the following.

Definition 8.18. A limited formula ¢ is of rank < «iff every quantifier in
@ is of the form Vx%, for some f < «, and every constant term occurring in ¢
is an element of T,. We now define an operator D, for closed limited for-
mulas of rank < o:

D,(t; € ty) S D(t,) e D(ty).

DK(1)) S D(t) e K.

D(F(t)) & D(t) e F.

D((Vx*)p(x%)) > (Vx € Ty) Dolp(x)).

Do(p A ) < Do(p) A DGh).

Do(—) < — D(9).

Do((Yx")p(x7)) > (¥x € B}) Dol p(x)), y < @, B, = {D(t) | te T,}.

NS AR

Remark. Then K, < B and « < B8 — B}, € B since D(#%(x* ~ x%)) = B..
Set B = (B, Ko, Fo).

We then prove by induction on « that

1) B, = B, and

ii) D(p) <~ B,F Dy(p) for ¢ of rank < o.

We need only consider the case « ¢ Kj;. If 1) holds for « < B and ¢ € T, then

D(K(t)) <~ D(t)e K
<~ D(tye KN B;
< D(t) e K, (by i) for « = B)
< By E K(D(1))
Similarly, we can prove

D(F()) <> B,k F(D(t)).
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We next prove ii) for « = 8 by induction on Ord? (¢). Since all other cases
are trivial or obtained from i) we need only prove

a. D((Vx*)p(x?)) <> By Dy((Vx")p(x?)) and
b. D((Vx")p(x")) < By F Dy((Vx")p(x")), ¥ < B

assuming ii) holds for all ¢(z) with ¢ € T,.

D((VxP)p(x)) < (V1 € Tp) D(9(2))
< (Yt € T)[BsE Dy(e(D(2)))] (by the induction hypothesis)
= (Va € By)[Bs F Dy(g(a))]
< (Va e By)[Bs F Dy(p(a))]
< BgF Dg((VxP)p(x*))

b is proved similarly. We now show that B,,,; = Bj;.,

D(Pp(xF)) = {D(t) | te Ty A D(p(1))}
={D(t) | te Ty A BsF Dy(p(D(1)))}
= {ae By | ByF Dy(p(a))}-

Thus if 1 = 27@(x?) for some y < S, then
D(t) € By, = D(t) € Df(By).
Furthermore

k= Dk)e By, <rank (k) < B A ke K
—~keKARPB+1
~kekKy,,.

Thus Bs,; = Bg,.

Remark. The ramified language and the operator D are very useful in
the sense that the definition of D is carried out by using K, F and transfinite
recursion i.e., without using any knowledge about V other than the theory of
ordinal numpets. Therefore if On < V' < V and V' is a standard transitive
model of ZF and F < K < V'’ (where K is transitive) then

LIK; FI = L[K; F].

If M is a standard transitive model of ZF, which is a set, and «, is the first
ordinal not in M i.e., ¢ = (On) = On O M («, is called the order type of
M), if M is another standard transitive model of ZF such that «y & M < M
and F < M where F is a class in M i.e., (Vxe M)[x N Fe M] then in M,
M is a proper class containing all the ordinals of M. Therefore we can con-
struct L[M; F]in M and we define this to be M[F]. Without knowing M,
the construction of M[F] can be done using a ramified language where all
the ordinals « in x*, T, etc. range over «q instead of the whole of On. This
construction is independent of the choice of M i.e., if M, M, are two stan-
dard transitive models of ZF with order type «o, if M = M,, M = M,, FS M
and F is a class in M, and M,, then L[M; F] in M, and L[M, F] in M, are
the same. Note that we may have M, ¢ M, and M, & M,.
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Even if there is no such M we can construct M[F] by using ramified
language. However in this case M[F] need not be a model of ZF, since we
have the following counter example.

Let M be a countable standard transitive model of ZF, F = M a well
ordering of w whose order type is On™. A standard transitive model M with
the properties described above exists iff M [F] is a standard transitive model of
ZF, but M[F] cannot be a model of ZF (since the order-type of M [F]is On™).
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9. Boolean-Valued Relative Constructibility

In this section we will generalize the theory of relative constructibility to
Boolean-valued structures for Boolean algebras B that are sets. Here %, will
denote the language of the first-order predicate calculus with predicate
constants = and €. In addition & is a first order language that is an extension
of %,. In most applications & will have only finitely many constants but it
may have infinitely many. M and M’ will be two B-valued structures for the
language %, Recall that M and M’ must each satisfy the Axioms of Equality
of Definition 6.5. Also, whenever we consider [¢],, we assume that the under-
lying Boolean algebra is M-complete where M = |M| i.e., M is the universe
of M.

With these conventions we proceed with the task of defining Boolean-
valued relative constructibility.

Definition 9.1. M is a B-valued substructure of M iff

. M M,
2. For each n-ary predicate symbol R of .Z, including = and €,

(le, L) an € M)[[R(ala ) an)]]M = [[R(al’ ceey an)]]M']
3. ¢ = ¢ for each individual constant ¢ of Z.

Remark. Most of the conditions 1-3 of page 68 can be easily general-
ized to the B-valued case. It is, however, more difficult to find an adequate
condition corresponding to the requirement that M, be transitive.

Definition 9.2. If M is a B-valued structure for £ and M’ < M, then
an element b € M is defined over M’ iff

(Vx e M)[[[x ebl= > [x=x1[x¢e b]}].
x’'eM’
Remark. Thus, in order to calculate the value of [x € b], if & is defined
over M’, we need only know the values [x’ € b] for x’ € M.
We now wish to formulate conditions analogous to 1-3 of page 68. Let
(M, | « € On) be a sequence of B-valued structures for the language £ such
that M, is a nonempty set except for M,

1. M, is a B-valued substructure of My, for « < 8,
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and

2. Ma = U MBQOCEKII'

B<a

Then M £ U weon Me-

Again we can define M such that [M| = M, M is a B-valued structure and
M, is a B-valued substructure of M for all «. M is uniquely determined by
these conditions. [@] stands for [@]y. Furthermore we require the following
conditions.

3. M, satisfies the Axiom of Extensionality.
4. For each be M,,,, b is defined over M,.
5. For each formula ¢ of %,

(Va,,...,a,€ MY3be M, )Vae M)lp(a, ai, ..., a)lw, = [aeb]l.

Condition 4 replaces the requirement that M, be transitive for all « in
the 2-valued case. Note that 5 is just the condition 3 of page 68 i.e.,

DfM,) < M,,, for B =2
Since M, is a B-valued substructure of M

(vali R ] an € Ma)[ﬂ(p(al’ RS ] an)],\l" = !I(P(als sty an)ﬂ]

if @ contains no quantifiers.
The following three theorems are proved just as in the case B = 2.

Theorem 9.3. If A is a B-valued structure for & and c¢* e A for every
individual constant ¢ of %, then there exists a unique B-valued substructure
C of A such that |C| = 4.

Theorem 9.4. If A is a B-valued structure for & and |A| is a set, then there
exists.a formula ® of %, such that for all closed formulas ¢ of £L(C(A4))

[I‘P]]A = b g (D(A, B’ I'(P"I, b)

Theorem 9.5. If A isa B-valued structure for & where 4 = |A| may be a
proper class then for each formula ¢ of % there exists a formula i of £, such
that

Vay, ..., a,€ D[lplay, - . ., a)la = b <> (A, B, ay,...,a, b
Theorem 9.6. (Ya e M )[[3x € @)p(x)] = 2 .en, [x € al [p(x)]].

Proof. Ifae M,thenae M,,, and hence a is defined over M,,.

[(3x € a)p(x)] = > [x € a][p(x)]

xeM

> D Ix = x1x ed]ex)]

XEM x’€My

(Since a is defined over M)
88



< 2> 2 [x=x1Ixealpx)]  (Axiom of Equality)

XEM x'eMy

< > ¥ edlp(x)]

X'eMy

< > [xeallpx)]

xeM

= [(3x € a)p(x)].
Theorem 9.7. (Va € M )[[(Vx € @)p(x)] = [ rem, ([x € a] = [p(x)])].

Remark. Theorem 9.7 follows from duality. The preceding results
enable us to cope with bounded quantifiers. As an application we have the
following.

Theorem 9.8. M satisfies the Axiom of Extensionality i.e.,
(VYa, be M)[[(Vx)[x€ea < xeb]—a = b] = 1].
Proof. 1f a,be M then 3a)[lae M, A be M,]. Then from Theorem 9.7
[(Vx)[xea<xebll= [ [ [xea<xeb]

xeMy

= H [xea > x€bl,

XEMg
< [a = bly, (by 3 above)
= [a = b].

Theorem 9.9. M satisfies the Axiom of Unions i.e.,
(Ya e M)[Ab)(¥x)[xeb ~ @yeca)xey]] = L
Proof. 1f ae M, then 3b € M, such that
(Vx' € M3y € )[x" € yllu, = [x" € 0]

Since b is defined over M,,

[xebl = 2 [x =~y el ey,
= ZM [ =1 2, [yedlx ey
= ZMaf[yea]] 2 Ix = ¥I1¥ €]
= yEZMa [yeal Ex Gay]] (Since y is defined over M)

Ay ea)xey]] (by Theorem 9.6).
Remark. The Axiom of Pairing is established similarly.
Theorem 9.10. M satisfies the Axiom of Regularity i.e.,

(Vae M)[[3xea— (3xea)Vyex)[y ¢a]l = 1].
Proof. 1If a € M we wish to show that

[@x e d] < [(3x € a)[a N x = O]].
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If not then (3x, € M)[[xo € a] £ [(Ax € a)[a N x = O]]]. If
@ = p((Axo € M)[x, € a] £ [(3x € @)la N x = O]]D),
then dx, € M, such that
[xo€a] £ [Bxea)an x = 0]].
Since My = 0, (Jep)[c = @ + 1]. Then
[xo N a #0] = [(Fy e xo)[y €all
= > [yex]lyed

yeMm

=> > [y=yllyexllyed

YEM Y'EMqy

SZ Z [y = y1ly exlly €al

yeM Y'€Mag

<> > Iy =y exll@reaan x =0]]

YEM W'EMqg

< > yexldl@xealanx = 0]

Then
[xoNna#0] <[@xea)an x=0]].
Hence
1=[xgNna=0]+ [(Ixea)lanx = 0]]
[xo€a] < [xp€da]lxoNna=0]+[Bxea)anx = 0]]

<
<[@Exea)lanx=0]] + [3xea)an x = 0]]
= [Axea)an x = O]].

This contradicts the choice of x,.
Theorem 9.11. M satisfies the Axiom of Infinity.
Proof. Left to the reader.
Remark. We now turn to the proof of the Axiom of Separation.
Theorem 9.12. The function F: On — B defined by
F@ = 2 lp(@)]

aeMg

is nondecreasing, with respect to the Boolean relation < of B, and it is con-
tinuous.

Proof. Obvious.
Theorem 9.13. If F: On — B is nondecreasing, then
(@B)(Va = BF(x) = F(B)]
i.e., F is eventually constant.
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Proof. 1f g(b) = pg(b < F(B)), b€ B then g: B— On. Since B is a set,
(3B)[B = sup g“B]. Then (Ya = B)[F(«) = F(B)].

Theorem 9.14.  EFB)[(EFV)p(V)] = Zaem, [e(@)]].

Proof. Theorems 9.12 and 9.13.

Corollary 9.15. |

(Ya)@B)(Vay, . . ., an € M.,){uay)qo(al, D= D [plas .., 4y a)]

aesMy

Theorem 9.16. For each formula ¢ of % there exists a semi-normal
function F such that

(Va)(VB)lﬁ — Fla)— (Vay, ..., ay M»ﬁ(ay)«p(al, el )]

= Z lp(ay, . . ., a,, a)l

aeMg

Proof. 1If

F@ 2 oy = « A (Vay . aue Ma)[u(aymal, o an

—_ Z [[(p(al, 7 a)ﬂ

aeMy

).

Corollary 9.17. For each formula ¢ of % there exists a semi-normal
function F such that

the result then follows from Corollary 9.15.

(VB)[B — F(B)— (Vay, ..., ay € MB){ (@), - ., an 9)]

= > lelay, ..., a, a)]]H.

aeMpg

Theorem 9.18. For each formula ¢ of .Z there exist finitely many semi-
normal functions Fy, ..., F, such that

(VBB = Fi(B) = -+ = Fu(B) = (Vay, .. ., an € Mp)llg(as, . . ., a4)]
= [p(ay, ..., aﬂ.)]]"g]]'

Proof. Left to the reader.

Theorem 9.19. M satisfies the Axiom of Separation i.e.,

Vay, ..., a,, ac MH[[@bXVx)[xeb < xea A ¢(x,ai,...,a,)] = 1].
Proof. If a,a,,...,a,e M then there is an « such that

[a,ai,...,a,e M, ] A (VX' e M)[[x' €a A (X, ay, ..., ay)]
=[xea A ¢, a,...,a)u,])

Therefore 3b € M, ., such that

(Vx' e M)lIx' eb] =[x €a A o(x, a4y, ..., ap)lm,]-
91



Then
[xebl = > [x=x][x eb]

x'eMgy

z [[x = x']] [[xl € aﬂ ﬂcp(x', (25 PIRE an)ﬂ\la'

x‘eMy

> b

x'eMy

> [x = xllxedlpx, a, . .-, a,)]

xX'eMy

> Ixeadlp(x, ay,. . ., ay)

Hx € a]] H(p(xz als L] an)ﬂ

> Ix = x1[¥ edle(x, as, . . ., a,)]

x'eMq

> Ix = x]x edle(x, as, ..., a)l

x’eMgy

x’ﬂ [[xl € aﬂ [I(P(x" (25 PIN an)]]

IA Il
Il

IA

Il

IA

Then [x € b] = [x € a][e(x, a4, . . ., a,)].

Remark. The problem in the proof of the Axiom of Powers is to find a
kind of bound for all 4 such that 6 < a.

Theorem 9.20. If ae M,,, and [(Vx)[xeb «—xea A ¢(x, a,,...,a,)]l
=1 then b is defined over M,, i.e., every definable B-valued subset of
ac M, is defined over M,.

Proof. Under the hypothesis of the proposition
[IC € b]] = [[C € aﬂ [[(P(c5 Aysy .- an)]}
= z IIC = C'H [[C' € a]} [[(P(C, Ay .-y an)]]

= Z [[C = clﬂ H:cl € a]] H‘P(Cl, [ I an)]]
= Z lc = ¢'llc €b]
c’eEMy

i.e., b is defined over M,.
Theorem 9.21. If b,, b, € M are defined over M, then
(Vx" € M)[[x" € by = [x" € by]] — b, = bo] = 1.

Proof.
xebl= > [x=x1[x €b
= 2 [x=x]x¥ b
= [x € b,].

Thus [b, = b,] = 1 by the Axiom of Extensionality.
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Theorem 9.22.
(Va)(3B)(Va € M)[a is defined over M, — (3b € Mp){la = b] = 1]].

Proof. BM«is a set. For s € B¥« we define

(s) & py((3a € My)la is defined over M, A s = {<x, [x € a])

x € My}

= 0 if there is no such §.
Then
@88 = Sseggaf(S)]-
If a is defined over M, and
s={x,[xea])| xe M}
then s € BM= and hence
(@b e My)ls = {{x, [x e b]> | x € M}

where b is defined over M,. Then [a = b] = 1 and b e M,.

Theorem 9.23. (Va)(3b e M)(Na e M)[la € b] = 1].

Proof. (3be M., )Vae M)[lacb] = [a = aly, = 1].

Remark. In case B = 2 Theorem 9.23 means that M, is contained in
some be M.

Theorem 9.24. M satisfies the Axiom of Powers i.e.,
(Vae M)[[(Ex)[x = Z(a)]] = 1].
Proof. If ae M then (3e)[a e M,]. By Theorem 9.22
(3B)(Vh)[b is defined over M, — (30" € M)[[b = '] = 1]].

By Theorem 9.23
He)Vb' e MY)[[b" e c] = 1].

It is then sufficient to prove #(a) < ¢, i.e.,
(Vxe M)[[x € 4d] < [xec]}.
By the proof of the Axiom of Seraration
@Bbe M)[[(VY)[yeb—=yexnyeall=[b=xnada] =1]
Then b is defined over M,. Hence

@b e M)[[b = b'] = 1].
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Therefore

[x €d] =[x<alb=xnNad]
< [x = b]
=[x =01
=[x =b][b" e
< [xec]

Theorem 9.25. M satisfies the Axiom Schema of Replacement.
Proof. We take the Axiom of Replacement in the following form:
(3b)(¥x € a)3y € (@ )p(x, ¥') = @(x, ¥)]-
We wish to prove
(Va e M)[[(3b)(Vx € a)3y € b)p'(x, y)] = 1],
where we abbreviate (3y")p(x, y') — @(x, y) by ¢'(x, y). First we note that

(Vx e M)[[E)e'(x, )] = 1]
If @ € M then (3a)[a € M,] and since 2 o [9'(x, )] = 1.

EB)(Vx e m)[ S I@te ) = 1 |

yeMy .

by Corollary 9.15. Then, for this
@b)(Vy e Mp)lly e b] = 1],
by Theorem 9.23. Hence

Z [y e bl ¥ (x, )] = }; [y € bl e’ (x, p)I
= > [¢'(x .
Therefore -
(rxeMa| > reb el =1
and hence - |

(Vx € M[[@y € b)¢'(x, v)] = 1].
Since a is defined over M, we have for xe M

[xea] = Z [x = x'][x" €d]

< Z [x = x'11(3y € be' (X', »)]
< Z [@y € b)p'(x, y)]
= [@y € b)¢'(x, y)I.
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Therefore

[xead] < [@yeb)'(x,y)]

hence
[(Vxea)@y e b)e'(x, y)] = 1.

Remark. We have now proved the following.

Theorem 9.26. If the sequence (M, | « € On) of B-valued structures for 2,
satisfies the conditions 1-5 of page 87-88 and M = Uyeon M, then M is a
B-valued model of ZF.

Remark. As an application of the method developed in this section we
shall define V'[F] by using a ramified language. In §7 L[K] was introduced as
the class of all sets that are constructible from K. The class K can be identified
with its characteristic function F: K— 2. However we now consider a
Boolean-valued set i.e., a function F: K— |B| and regard the class of sets
constructible from K in the B-valued sense. If we think of ¥ as the class of
2-valued sets V[F] becomes an extension of V containing new sets.

Assume K e V, fo: K— Band Z is the language Z,(C(V) U {V'( ), F()})
therefore we have individual constants & for each k € V.

Definition 9.27. A sequence (T, | « € On), where
Trz = Ty, ;3 gs Vm Fa>a

of B-valued structures for the language % is defined as follows:

T, is the set of constant terms ¢ with rank p(¢) < o« (Definition 8.2). [e]y,
for a limited formula ¢ of rank < « is defined by recursion on Ord (@) as
follows.

LIVOl, = D [t =k, teTa

keR(a)

2. [F()lx, [t = klr fo(k) teT,.

keR(a)NK

(98)

ks €koln, 2 1ifkieky  plky), plks) < @
2 0ifk, ¢k,

4. [t €k, 4 Z [t = K'l, teT,, t not an individual constant.
k’ek

5. [te oy, = D [t = t'IgJe( Ve, 1€Twmp < e
t'eTg
6. [t = t3]r, = H [tet, < tetyly, t, t2 €Ty, B = max (p(t1), p(t2)).
teTg

7. [—¢lr, 2 “lolr,, 91 A @alr, = (@1l I@alr,-

Ve, = [ [ 9, B < o

teTg

0
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We extend the definition of [¢]y, to unlimited formulas by adding
9. [(Vx)g(®)x, = [ [ [p()],-
teTy

Remark. There is a slight difference in our approach compared with §8
since = is now a predicate constant of %, whereas previously we defined ~.
However, the definition of ~ corresponds to 6 above. Theorems of §8 show
that in 1-8 Ord (o) is always reduced to lower values so that the definition is
recursive.

We must now prove that the sequence (T, |« € On) has the desired
properties.

Theorem 9.28. Vi, t, € T,.
1. [[tl = tl]]Ta = 1.
2. [t = tolx, = [tz = tilr,
Proof. Obvious from Definition 9.27.
Theorem 9.29. Vk,, k, € R(x).
ky = ko —>[ky = kzﬂm =1
ky # ko — [k, = kzﬂra = 0.
Proof. 1f k, # ky and B £ max (p(ky), p(ky)) then by symmetry we can

assume (3k)[k ek, A k ¢ k,].
Then p(k) < B, and

[ky = kaoly, = [ [ [t € k1 < t € ksl

teTy,
< lkek, = kekyy, =0.
Then k, for k € V, can be treated as a 2-valued set and Definition 9.27.4 holds
for t = k,, too.
Lemma. V¢ keT,.
1 P(t) plk) —Tketly, = 0.
p(t) < p(k) —[k = tly, = 0.
Proof. We prove 1 and 2 simultaneously by induction.
If p(2) < p(k) and ¢ = £Pp(x?), then since p(t’) < p(t) < p(k)
lketle, = > [k =t1p('] = 0.
t’eTy
If p(t) < p(k) then since 3k, € k, p(t) < p(k,) < p(k)
[t =klr, < [ [lkret] =0.
kiek

Theorem 9.30. V¢, t5, t;€T,.

L. [ty = tolrlte = t3lx, < [ty = t3]p,.

Proof. Let o = p(t), i=1,2,3, and let B, = max (ay, o), Bz =
max (ag, a3), and B3 = max (a3, «;). Writing [ ] for [ Jy, we proceed by
induction on p(t3) = «s.

96



Case 1. jB; < B; A B3 < B,. Obvious from Definition 9.27.6.

Case 2. B, < B3 V By < B3. From Theorem 9.28, 1 is equivalent to:

2. [ts = ][t = 1] < [tz = 4.
Consequently, if 1 is proved for «; < «3 then 1 also holds for oz < «;.
Therefore we may assume o, < «3 and hence 8, £ B;. Thus we need only
consider 8, < B;. Then B, = max (¢, «3) < By = B3 = .

First of all we assume that ¢; is defined over T, for i = 1, 2, 3. (That this
is really the case will be shown a little later.)

Letb = [t; = t,][t; = 15]. Thenfort e T,, = Ty,
Hren]=b > [t=1t][t'et]

t'eTq,
(since ¢, is defined over T,,)

=t =t3] D [tn=t]lt = ][t et]

=ln=1t] > [[lset osen]lt =10 et
t’eTy seTp,
< Dty =t e t][t = '],

t'eTq,
(since we can take s = t’)
< D> et =1]
t’eTqy
(by the same technique as above)

> It =10t et

t'€Tay

IA

= [t e ty] (since t3 is defined over T,,).
Therefore b < [t et;, — t € 3] for t € Tj,. On the other hand for ¢ € T},
bltets) =t = 1] D [tz = ta]It = t'][t' € £:]

t'€Tqqy

<l =1t] 2 [t en]lt=1]

t’€Tay
(by the same technique as above)

> lt=t12 [n=wllt'=1101"et]

t'eTqeq t”eTqqy
< > t=t] > [t =t]t"et]
€T g t7€Tay

(by the same technique as above)

> lt=1t10"et]

t"eTq,

IA

(by our induction hypothesis, since p(t") < p(t3))
= > =013 " =1l en]

7€Tqy t'eTq,y

< > =t et]

t'€Tq,

(by the induction hypothesis, since p(¢t") < p(t3))
= Ht € tl]]'
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Therefore b < [tet, < tets] forall te Ty,
We next wish to show that if 8; < 5 then ¢, is defined over T,. We first
prove that if pik) < p(t5) then k is defined over T,

ltekl = > [t =K1k €k]
k’ek
S Hf = t,ﬂ [It’ € kﬂ (Since k E TD(;C))
t’ETp(;ﬁ) -
= [t=1012 1" =K1
t’ETp(;ﬁ) k'ek

IA

Ts.
[toet]
<
<
<
<

Z z [t = k'] (by the induction hypothesis)

t'ETpuy k'ek

2

[t =K]=1[tek].

k’ek

ie, [1 €kl = Spery, [t = ][t €K].
Next we show that if 1 = £Pp(x?) for some 8 < a5 then ¢ is defined over

= > Ity = t'}e(t"]

t’eTy

D Mo =112 to = t"}g(t"]

t’eTy t"eTy

z [t = 1] z [t" = t")[e(tM)], (by the induction hypothesis)
t'eTy t'eTy

2 o =110t = 1]

t’eTy

> Moo=t > 1t = t"Ilp(¢"]

t’'eTy t"eTyg

Z [to = ¢"Tle(z )], (by the induction hypothesis)
t"eTg

= [[to € t]].

Since o; < a3 < a3 0r @y < @ < g it follows that 1 is defined over T,
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Remark. We have also proved that if ¢ € T, then ¢ is defined over T,
The same argument can be used to prove the following result.

Theorem 9.31. If e T, then ¢ is defined over T,.

Remark. We now return to the remaining Axioms of Equality.

Theorem 9.32. V¢, ¢, ;€ 7T,

1. [t
2. [t
3. [
4. [t

talx [tz € 3, < [t € t3]x,.
tolr,[ts € tillr, < [ts € talr,.
Lol IV ()], < [V (t2)lr,-
tolr [F(t)]lx, < [F(t3)lx,.



Proof.

L[ =tlltets] < D [ty = ][t = ][t € 4]

teTy

IA

> It =nllret]

[t € t3] (by Theorem 9.31).
2. [ =tlltsen] =[t =1] > [t=tlltes]

teTpcey)y

D> lt=t] [ Iset<setllten],

teTptyd seTgy

I

where 8, = max (p(t,), p(ts))

< > lt=tlltet)

teTpty)
< > lt=1tllten], (since p(1,) < @)
= [t5 € t,].

3 and 4 follow from Theorem 9.30.

Remark. We have now proved that T, is a B-valued structure. (See
Definition 6.5)

Theorem 9.33. T, satisfies the Axiom of Extensionality.
Proof. Obvious from Definition 9.27.6.
Theorem 9.34. [fteT,,, then ¢t is defined over T,.
Proof. See remark following Theorem 9.30.
Theorem 9.35. If ¢ is a formula of Z then
(Viry ., €T3t € Ty )Vt e THll@(t, th, . . ., t)lx, = [1€ ']y, ].

Proof. If ¢ £ X*p*(x%, ty, ..., t;,) where ¢% is the formula obtained
from ¢ by replacing Vx by Vx% then¢t'€7,,, and forte T,

[[t € )ealpa(xa’ tl& ] tn)HTcH,l = Z IIt = t”HTg +1 [[(Pa(t”9 tl5 ceey tn)ﬂTaJrl

t7eTy

Il

H(Pa(ts tl’ ] tn)ﬂ’l'a +1
= H(Pa(t: tl: ] tn)HTa
= H‘P(ty th ey tu)ETa~

Remark. Thus we see that {T, | « € On} satisfies the conditions 1-5 on
p. 87-88. Therefore if T = (T, =, &, V, F) is defined from <{T, | « € On) as
M from {M,, | « € On> then T is a B-valued model of ZF. We can also define
a denotation operator D as in §8 and put V[f,] = {D(¢) | t € T}. However we
are more interested in standard 2-valued models. In order to obtain a suitable
homomorphism of V[f,] onto a 2-valued model we relativize our results to
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some M. Let M be a transitive model of ZF, and let B be an M-complete
Boolean algebra with B € M. Furthermore assume that K€ M and f;: K — B,
fo € M. By relativizing our previous definition of T to M we obtain (F[f])™.
Let 4: |B| — |2| be an M-complete homomorphism. (If M is countable there
are such homomorphisms by the Rasiowa-Sikorski Theorem.) Then we can
pass to a 2-valued standard model.

Definition 9.36. Fy 2 {k € K | h(fy(k)) = 1}.
For ¢, t;, t; constant terms,

1. D(t;, € t;) & D(t,) € D(15).

2. D(V(1)) & D(t) e M.

3. D(F(t) & D(t) e F,.

The remainder of the definition is the same as in Definition 8.14.

Let M[Fo] 2 M[h] 2 {D(t)|teT}, whereT = {T,| e M}.

When we wish to identify the particular denotation operator associated
with a particular M[F,] we will write Dyyr,; instead of D.

4. D'(V() S Gke M)D'(t = k).
D'(F(1) & (3k e Fo)D'(t = k).
D'(k; € ko) = k; € ko, ky, ks € K.
D(tek)S Ak e K)D'(t = k).
D'(te %8 (xﬁ)) A@reT)[D(t =1t') A D'(e(t')], Be M.
LDt = 1) S (VteTp)D'(t ety <t ety), B = max (p(t1), p(t2)).
10. D'(—¢) < —|D(9>) D'(p A ) < D'(p) A D'().
. D'((VxP)p(x?)) < (Ve € Tp) D'(9(1)), B M.

© 0 N o

Remark. 1t is easy to see that D is equivalent to D’ and the following
theorem holds:

Theorem 9.37. M[F,]F ¢ < h([¢]) = 1.

Remark. Since T is a B-valued model of ZF, we have [¢] = 1 for each
axiom ¢. Consequently we have the following result.

Theorem 9.38. M [F,]is a standard transitive model of ZF. If M satisfies
the AC so does M [Fy].

Proof. To show that M[F,] satisfies the AC if M does we note that if M
satisfies the AC then since K e M, K is well ordered and, since F, < K, F, is
also well ordered in M[F,]. Hence M [F,] satisfies the AC.

Remark. Comparing the results of Theorem 9.38 with those discussed at
the end of §8 note that we did not require the existence of a model M of ZF
with the same order type as M such that F, is a class in A but instead F, must
satisfy certain requirements to ensure that M[F,] be a model of ZF. Defining
M [F,] by considering B-valued relative constructibility has many advantages
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as will become clear from the applications in the next sections. We can
however give an application of this method now:

Suppose that M is a countable standard transitive model of ZF, Be M
and B is M-complete, also K€ M and (V[f,]) is defined as before. Now
assume that there is some sentence ¢ such that [e] # 0. Then there is a
homomorphism /: |B| — |2| that is M-complete, sends [¢] to 1, and from
which we get a standard 2-valued model M [F;,] of ZF in which ¢ is true in the
ordinary sense of 2-valued logic.
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10. Forcing

As an application of the general theory developed in the previous sections
we give a definition of “forcing” and derive its elementary properties.
Throughout this section, M denotes a standard transitive model of ZF,
P e M is a partial order structure, and B is the corresponding M-complete
Boolean algebra of regular open sets of P in the relative sense of M. Further-
more we have

h an M-complete homomorphism of B into 2,
Fan M-complete ultrafilter for B, and
G a set that is P-generic over M,

such that /1, F, and G are related to each other as described in §2. Thus one
of them may be given and the remaining sets are obtained from it as in §2.
We now specialize the construction of M [F,] to one of the following cases:

l. K= Bandfy: B— B is the identity on B or
2. K= Pand fy: P— Bis defined by

folp) = [p1"°, peP.

In case 1
Fo = {be B| h(fy(b)) =1}
={beB|hb) =1}
= F.
In case 2

Fo={peP|h[p]® =1}
={peP|[p]CeF}

= G.

Since A, F, G are obtainable from each other in a simple way, we have in
both cases M[F,] = M[h] = M[G] = M[F] and Theorem 10.1 follows.

Theorem 10.1. If G is P-generic over M then M [G]is a standard transitive
model of ZF that has the same order type as M. For any formula ¢ of %,

MI[G]F o < h([g]) = 1
~[pleF
e[[(pﬂﬂG#o.
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Furthermore if M satisfies the AC so does M [G].

Remark. [g] = b is definable in %, from P and Tg! (uniformly in T if
@ ranges over limited formulas only).

Definition 10.2. 1f pe P and ¢ is a formula, limited or unlimited, then

p oo pelpl

Theorem 10.3. p @ is definable in %, from fe', b and P (uniformly in
el if @ ranges over limited formulas only).

Remark. As can be seen from Theorem 10.1 there is a close relationship
between satisfaction in M [G] and the notion of forcing. In particular the
forcing relation satisfies certain recursive conditions similar to the notion of
satisfaction in M [G]:

Theorem 10.4. Let k, ky, ko€ V and ¢, t,, t, be constant terms.

pt—pe=(Vg<p) (g

pher Apaeplo Apltos

- p (VX)p(x) < (Vi e T)[p i (1)].

- p I (Vx)p(x®) <> (Vg < p)Eq < @)Vt e To)lg" t o(H)].

. p V() (Vg < p)Aq° < q)3k)lg' tt = k]in particular p i V (k).

. p F(t) <~ (Vg < p)3q < q)(3beB)lbeFy A ¢’ 1t = k]

. pki€eky < kiek,.

.phiek <~ (¥g < p)Eq < Gk ek)lg k1t =Kk'].

phrebp(xf) (Vg < p)q < Q)@ eTylg' bt =1t" A g o))
L p it =ty p (VXP)[XP € 1, < xf € 1,] where B = max (p(11), p(t2))-

AN -

O O 00 3 O W

|

Proof. The proofs of most of these statements are obvious from the
definition:

L.pt —p<pe gl
(Vg < p)lg ¢ [l
~ (Vg <p)- gt el
2.pth o1 A pgpelpr A @l
<pelp] A pele.
<>ple ApHte,

3. p b (V)p(x) < p e (ﬂ [{qo(t)ﬂ)""

teT

< pe () le®)] by Theorem 1.35

teT

< (Vte T)[p t o(1)].
4-10. The proofs are left to the reader.

Remark. Note that in order to define forcing and prove Theorem 10.4
we need not assume that M is countable. However, in order to prove the
existence of an M-complete homomorphism of B into 2, or equivalently the
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existence of a set G that is P-generic over M, we need some further conditions
on M. We collect all these requirements in the following definition.

Definition 10.5. (M, P> is a setting for forcing iff

1. M is a standard transitive model of ZF,
2. P is a partially ordered structure and P € M,
3. M is countable.

Remark. Under these assumptions we know that for each p € P there
is a G that is P-generic over M and p € G. In fact 1 and 3 could be weakened.
In particular, it would be sufficient to require instead of 3

3. Z(P) N M is countable.

The following theorem is a kind of completeness theorem for forcing.

Theorem 10.6. If (M, P) is a setting for forcing then
p o< (VGG is P-genericover M A pe G — M[G'] E ¢].

Proof. Using the one-to-one correspondence between P-generic sets over
M and M-complete homomorphisms from B into 2 we need only show:

p @<= (VA)[h': |B| — |2] is an M-complete homomorphism
A R([p]7%) = 1K ([g]) = 1].
But the right-hand side is equivalent to
(p17° < [¢]
which in turn is equivalent to each of the following:
p €yl
e

Remark. We could also define forcing either (1) by using the recursive
conditions of Theorem 10.4 or (2) by the equivalence of Theorem 10.6. On
the other hand, the definition of forcing by (1) allows us to define a B-valued
interpretation | || by

lel ={peP|ptq}
Theorem 10.7. g <p Aplto-—>qglt e
Proof. Obvious from the definition.
Corollary 10.8. —[pt e A p I+ —gl.
Remark. On the other hand, we need not have p - v p I+ —o.

Theorem 10.9. If G is P-generic over M and S = {p e P | p ¢} is dense
then M[G] E ¢.

Proof. S = [¢] is regular open in P since [¢] € B. Then, since S is dense,
S = S % = 1. Therefore [¢] = 1.
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Definition 10.10. For each S < P, S is dense beneath p iff [p] = S~.

Theorem 10.11. If G is P-generic over M, if pe G and if Se M is dense
beneath p then G N S # 0.

Proof. Under the given hypothesis if
S'=Su{geP|—Comp (p, q)}

then S’ e M and S’ is dense, hence G N S’ # 0. But any two elements of G
are compatible, hence G N S # 0.

Theorem 10.12. If G is P-generic over M and p € G then
P Ex)p(x) >3 < p)IeT)ge G A gt 1))
Proof.
p kG0 < pe > [o(0] = () tot0)

e (U (o)) -

So p I (Ix)e(x) implies that | J.r [p(2)] is dense beneath p, and the same
holds for " = [p] M User [@(2)]. Also S’ € M since Be M. Therefore by
Theorem 10.11

P (@) — (g c G)[q <pngel uqo(z)u]

—@3qQ)EteNg<p AgeG A gt ¢()].
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11. The Independence of ' = L and the CH

Cohen’s technique of forcing was created for the specific purpose of
proving the independence of several axioms of set theory from those of
general set theory. In this section we will use Cohen’s method to prove the
independence of V' = L and the CH from the axioms of ZF.

Let M be a countable standard transitive model of ZF + V = L.

Definition 11.1.

PE{pLpo|pSwoAp,SwAp <wnpy<whp Op, =0
(P P2 < <PL P < PL S pi A Ph S pa

P 2P <.

VG < P,a(G) = {new| @pi,p)lnep, A {py,p2> Gl

Va < w, Gla) 2 {p., p2> [prSanp,sw—an {p,pseEP}

Exercise. Prove that the partial order structure P is fine in the sense of
Definition 5.21.

Remark. Pe M, d(G) < w and G(a) < P.
Lemmal. a, S w A ay S w A a, # a; — G(a,)) # G(ay).
Proof. Without loss of generality we may assume
@Anew)lnea, A néa,l.
Then (n}, 0> € G(a;,) but {n}, 0> ¢ G(ay).
Lemma 2. If G is P-generic over M then G(&(G)) = G.

Proof. If G is P-generic over M and p = {p,, p,) € G then p; < a(G)
and p, € w — 4(G).

For if n e p, and n € @G) then 3¢ = {q1,49.) € G, ne€q,. Since p,q e G,
3r = (ry, rey€G, r < p Ar <gq. Since r <p A nep, we have ner,. But
alsoner; sincer <q Aneq,. But re P and hence ry, N ry = 0. This is a
contradiction. Hence G < G(a(G)).

If p = {p1, po> € G(@(G)) then p, < &G) A p; S w — &G). If

pro={ny, ..., n

then since p, < d(G), 3¢' € G, ¢' = {q,%, ¢.">, i = 1, 2, such that
n, €qi A nyeqi.
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IreG,r <q¢* Ar < g% r=<r,ry. Thenn,, ny € ri. Thus, by induction
g = {q1, 927 €G, p1 S ¢y, i.e., ¢ < {py, 0>. Let py = {my,..., m} and let
S = Ui [m}, 001 U [€0, po>]. Then S is dense and hence SN G # 0.
Let ¢' be in SN G. Since p, © w — &G),q; N p, = 0 where ¢° = g}, g2>.
Thereforeq’ < <0, p,>.Sinceq,q' € G,Ire G, r < g A r<q.Sor < {py, ps
since g < {py,0> and ¢’ < <0, p;>. Hence p = {p,, p,> € G. Therefore
G(a(G) < G.

Lemma 3. If G,, G, are each P-generic over M then
a(G,) = d(G,) < G, = G
Proof. Lemmas 1 and 2.

Remark. Thus @ is a one-to-one correspondence between P-generic sets
over M and certain subsets of w. Also M[G(a)] = M[a] and M[G] =
M[a(G)} fora S wand G < P.

Theorem 11.2. If ae M and a < w then G(a) is not P-generic over M.

Proof. Ifac Manda < wthen G(a)e M. If S = P — G(a) then Se M.
For each p = {p,, po> € P there exists an n € w such that n ¢ p, and n ¢ p,.
Let

p=<pVin},py if né¢a
=<{pL,pV{n} if nea.

Then p’ < pandp’ € S. Therefore S'is dense. But S N G(a) = 0, consequently
G(a) is not P-generic over M.

Theorem 11.3. If G is P-generic over M then M [G]is a standard transitive
model of ZF + AC + GCH + V # L.

Proof. If a = &(G) then M[G] = M [a] and hence, by Theorem 11.2 and
Lemma 2, a ¢ M. Therefore M[a] is not a model of V' = L.
Since a € w < L, L, = L{a] and hence

1. V = L[a]— GCH.

But L[a] relativized to M [a] is just M [a]. Therefore the relativization of 1
to M[a] gives the GCH in M[a].

Corollary 11.4. If there exists a standard transitive model of ZF then there
exists a standard transitive model of ZF + AC + GCH + V # L.

Exercises. If P is as defined above

1. Prove that ~[{{n}, 0>]~° = [0, {n}>]~°.
2. Calculate

a. “[{p1, p22]°
b. [<p1: P2>]—0’[<41, 42>]_0-
c. [Kp1, p22]7° + [Kg1, g2017°
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Remark. Let (M, P> be any setting for forcing and =€ M be an auto-
morphism of P (7 € Aut (P)). Then = induces an automorphism # € M of B,
the Boolean algebra of regular open sets of P in M. Let G be P-generic over
M. Let F and h be the M-complete ultrafilter for B and the M-complete
homomorphism of B into 2 respectively, obtained from G. The following
theorem shows how G, F, and 4 transform under .

Theorem 11.5. =G is P-generic over M, #F is the M-complete ultrafilter
for B and h o #~'is the M-complete homomorphism of B into 2 corresponding
to =“G. Furthermore M[G] = M[F] = M[h] = M[="“G] = M[7"F] =
Mho#"2).

Proof. S < Pis dense iff 7S is dense. Therefore
SNa“G# 07" YS)NG#0.
Thus #*“G is P-generic over M. The ultrafilter corresponding to #*G is
(beB|bNm*G#0}={beB|a ' (b)nG# 0}
={be B|# b)eF}
= 7“F.
Finally
bea“F<#"Yb)eF
<~ ho#"Yb) = 1.
Therefore ho#~! is the M-complete homomorphism of B into 2 corre-
sponding to #“F.
Theorem 11.6. If

1. (¥p, g € P)(3m € Aut (P))[= € M A Comp (m(p), q)], and
2. G, and G, are P-generic over M,

then M[G,] and M[G,] are elementarily equivalent in the language
Z(C(M)).
Proof. If ¢ is a closed formula of Z,(C(M)) and if
M[G]Fe and M[G;]F —g
then 3p;, ps
PLEG AP o Ap,eGy A patt o

By 1 (AmeAut®P)[reM A (3p < »(p)p < p2]l. Let G be P-generic
over M and such that p € G. (Such a G exists.) Then since p < py, p2€G
and hence, by Theorem 10.6, M[G] F —¢. But also p; > =~ }(p) e (v~ 1)“G
hence 7~(p)  ¢. Therefore M{[(=~?)“G]Fep. But M[G] = M(="1)"“G].
This is a contradiction.

Exercise. Check that the partial order structure P of Definition 11.1
satisfies condition 1 of Theorem 11.6.
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Remark. Let P be the partial order structure of Definition 11.1 and
used for the proof of the independence of V = L. For k € w with kK < w
we define an automorphism =, of P as follows:

m({pr, p2>) = {q1,q2> Where g, = (p1 — k) Y (pa N k)
g> = (p2 — k) Y (p1 N k).
Obviously =, € M. We then obtain the following strengthening of Theorem
11.3.
Theorem 11.7. If G is P-generic over M then in M [G] there is no well-
ordering of #(w) definable in L(C(M)).
Proof. 1f ¢ is a formula of %(C(M)) defining a well-ordering of 2(w)
in M[G], then
dped, p I “p well-orders #(w)”.
Since @(G) € M[G], @(G) = Dyefto) for some term #, of the ramified lan-
guage. Then since 4(G) € w, Ip € G,
pi-“ftoAklk S w A k < w) has a g-first element”’
where a; A a, 2 (a, V ay) — (a; N ay) is the symmetric difference of @, and a,.
Furthermore it is easy to check that

a(m(G)) = a(G)Ak for k< w and k < w.

Then (3g € G)Fko)lko S © A ko < w A q# “ty A ko is the g-first element
of {toAk|k<w Ak <)l
Hence in M[G], @(G) A k, is the g-first element of
{@G)Ak | kS w Ak <o)

If ¢ ={q1,q,> then there exists a k, # 0 such that k;, S w, ki < o,
kinky=0,k;Nng, =0,and k; Ngy = 0. If
HZ2 M,

then H is P-generic over M and a(H) = a(G) A k. Sinceqg € Gand =, (q) = ¢,
q € H. Therefore, by Theorem 11.6, in M[H], a(H) A k, is the o-first element
of {d(H)Ak |k € w A k < w}. Since m, € M, M[G] = M[H] and

mMGlhkcwnrnk<w ={mHlkSwnrk<w
(@ G) |k S w Ak <w)={amH) ks oAk <w)
{@GC)Ak| kS wAk<w={@HAk|kS o k< o}

Thus d@(G) A k, is also the g-first element of
{GH)Ak|k<swnk<w} in M[H]
Therefore a(G) A ko, = a(H) A k,, but
d(H) = d(G)Ak, and Kk, Nk, =0.

This is a contradiction.
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Remark. We now return to the general case.

Theorem 11.8. 1f (M, P} is a setting for forcing, if M is a model of the
AC that satisfies the countable chain condition on P i.e.,

(VS < P)[(Vps, ps € S)lp1 # ps — —Comp (py, p)] =5 < K]

and if G is P-generic over M then the cardinals in M and M [G] respectively
are the same i.e.. every cardinal in M is a cardinal in M[G] and vice versa.

Proof. Since M < M[G] and On™ = On™9, every cardinal in MI[G] is
a cardinal in M because ““a is not a cardinal” <> (3f)e(f, a), for some ¢ that
is absolute with respect to transitive models.

Conversely if there is a cardinal in M that is not a cardinal in M[G] then
there is a cardinal A in M[G], and hence in M, but

y = (A"
is not a cardinal in M[G]. Let A be the smallest such cardinal. Then
X = FME < g = (AT,
Hence
(3fe MIGDIS: A =2 1.
Furthermore f is denoted by a term 7 of the ramified language and
(FpeP)peG A plt:x 222 4]
Abbreviating g i («, B> €t by @(q, «, B), ¢ is M-definable and furthermore

(¥, B < y)(Vq < p)(¥q" < p)
B#B Agh<la,fpet Ag t<{ap)et—-Comp(qg,q)]
for otherwise there exists a ¢” < g, such that ¢" < ¢',q" <, B> et,q" I

onto

(a,B'>et, and g" ¥ t: A 2225 y. This is a contradiction. Then if

Se=1{8 <v|(Gq < pp(q, B, @ <A

we have S, € M and S, < X,. Since fis a function onto y
y< U S.

and ¢S, |« < A» e M. Therefore " < A x o™ =
contradiction.

>4l

M <y =M This is a

Remark. Let P be a partial order structure and let B be the associated
Boolean algebra of regular open subsets of P. Then P satisfies the c.c.c. iff B
satisfies the c.c.c.: (=). Suppose S < B and (Vb,)(Vby)[b,-by€ S A by # by —
by-by = 0]. By the AC we choose a p fromeach be S. Let S’ consist of such p’s.
Then any two elements of S’ are incompatible. Therefore, S’ < w,and hence
5 < w. Conversely, let S’ < P and suppose any two elements of S’ are
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incompatible. Let S = {[p]°| pe S'}. Then S < B and any two elements
of S are disjoint. This follows from the following fact (See Theorem 1.29.2.):

(¥p,qe P)[pl N [q] = 0 = [p]=° N [g]=° = O].

Corollary 11.9. If (M, P) is a setting for forcing, if G is P-generic over
M, if M satisfies

(VS = P)[(Vps, p2 € )Py # p2— —Comp (ps, p2)] > 5 < A]
and if A is a regular cardinal in M, then the sets of cardinals =X in M and
M [G] respectively are the same.
Proof. We first show that A is a cardinal in M[G]. Otherwise
@Afe M[GDEX, < V[f: Ag 222> Al

Then, as in the previous proof, we obtain

rs S,

a<ig

which contradicts the assumption that A is regular in M. Using the argument
of Theorem 11.8 it follows that if x > A is a cardinal in M[G] then (u*)™ is
a cardinal in M[G].

Remark. Next we will prove the independence of the CH from the
axioms of ZF + AC. The idea of the proof is the following. Choosing some
suitable P € M which satisfies the countable chain condition in M we adjoin
o-many subsets of w. If « is a cardinal > X, in M, then the CH is violated in
the resulting model M [G] since cardinals are preserved by passing from M
to M[G]. The formal proof proceeds as follows: We define P by

PEp|ADdS ax w Ad<w A p:d—>2]}
Pr <P paS Py pipaEP
Let (M, P> be a setting for forcing such that M satisfies the AC.
Theorem 11.10. P satisfies the c.c.c. in M.
Proof. We show by induction on » that

(i) S PASeM A (Ypy, pz€ S)py # po — —~Comp (Pl,Pz)]_
A (VpeS)[Z(p)* = n] — S” < X,.
From this the theorem follows by defining
NES {peS|§@= n}.
Then S = U, S™ is countable in M by (i).
To prove (i) we assume S 3 0. Then Jp, € S, and

(Vp e S)lp, # p— (38 < «)3@m € w)[8, my € D(p) N D(p1)
A p(8, m) # pi(8, m)]

* 9(p) & {x | @Y)<x, ¥> e pl}
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If @(pl) iS {<Bls ml>’ DR <8m mn>}
Sio = {peS|8,m>eD(p) A pS,m) =0}, i=1...,n
Sa2{peS|<.m>e(p) A p(ym) =1, i=1...n
Then S = SlO U Sll U Sno U Snl' If

Sl 2 {p — (KB, mD, 0} | pe Sty i=1,...,n
ShA{p =GB, m)>, Dy peSy), i=1,..,n
Then S = S and S¥ = S/¥. But, by the induction hypothesis for n — 1.
S¥ < Ry A S < N,
Therefore $¥ < X,.

Remark. 1f G is P-generic over M, then for each § < « we define

a(G) = {new|@peG)p(3,n) = 1]
Claim: (V8, §' < &)[8 # &' — a,(G) # as(G)].
Let f be the function defined on « by
f(8) = a(G), 8 < «
It can be proved that f € M[G]. Let ¢ be a term in the ramified language that
denotes f. Suppose a;(G) = as(G) i.e. f(8) = f(&'). Then
M[G] E [1(8) = 1(3")]
and hence
1. Qge G)gt t(d) = (8]
We choose n such that
(V38" < «)[<8", n) ¢ D(q)].
Since & # &'
2. 3¢ <9lg'(d,n) =1 A ¢'(¥,n) =0].
Now choose a G’ that is P-generic over M and such that g’ € G'. Then
neasG') A né¢a,(G).
Hence
a(G") # a;(G").

But ¢’ G’ and by 1 and 2 ¢’ i #(8) = #(8'). Thus M[G'] I ¢(3) = t(&").
Therefore a,(G’) = as(G’). This is a contradiction.
We have thus established that
(V8 < o)[as(G) € »] and (V3,8 < «)[8 # & — ay(G) # a,(G)].

Therefore

P(0)M6 > o,
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Starting with some « > w,¥ we have « > ;M. This proves the following:

Theorem 11.11. If G is P-generic over M (where P and M are as specified
above) then M[G] is a standard transitive model of ZF + AC + —CH.
Furthermore, for any given cardinal « € M we can find a G and a P such that

Plw) =« in M[G].
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12. The Independence of the AC

In order to prove the independence of the Axiom of Choice from the
axioms of ZF we cannot use the models which were employed in the previous
section, since if M is a model of ZF + AC and G is P-generic over M, then
M [G] also satisfies the AC. Yet the model N which we shall construct and
which violates the AC is of the form M [G]. The corresponding language will
have countably many symbols and we shall add to M countably many
generic sets together with a set containing all these generic sets. In order to
deal with this new situation we introduce the following:

Definition 12.1. Let P, = {(P;, <>, iel, be a family of partial order
structures with 7 a set. Then

p-TTn
iel

(the strong product of the P;’s) is defined to be the partial order structure

(P, <> where
P2]]~A
iel
and
p1 < pas (Yie DIpi(i) < pa(i)] for py, paeP.

If each P; has a greatest element 1, i € I, then

P=]]P,
iel
(the weak product of the P;’s) is defined to be the partial order structure
{Py, <> where

P, 2 {p]peHPi A@AFS DIF < w A (Yiel — F)p@) = 1i]]}
i€l

i.e., Py is the set of p € P where p(i) = 1; for all but finitely many i e I, and

< is < of P restricted to P,.

Remark. The topology of [1i; P; is the strong topology of [ [;e; P; and
the topology of [, P; is the relative topology of both the weak topology of
[ Tic; P; and the strong product topology of [Tlie; Pi. Py is dense in [ [ie; P;
with the weak topology, but not necessarily dense in [, P; with the
strong product topology.
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Probiem. s the complete Boolean algebra of regular open sets of
[T, P; or [ [, P; determined by the complete Boolean algebras of regular
open sets of P, (ie [)?

Now consider [[2; P,. An element p e []%; P; is sometimes denoted by
{...Pipr-->Pi,- -y Where

pi, =pi) Ao Apy, = pli) AN (VieDli# i Ao NP D —pi) = 1]
In this case we also write
[...ps- P, .. 1 for [pl

Let P be the partial order structure of Definition 11.1 that was used for the
proof of the independence of V' = L. Let P, i€ w, be isomorphic copies
of P and let j; be an isomorphism of P onto P,. Note that P has a greatest
element <0, 0).

Consider the language Z,({V'( Y} U {F( ) | i€ w} U{S()}) and the corre-
sponding ramified language R({V( )} U {Fi( )| i€ w} U {S()}). Let B be the
complete Boolean algebra of all regular open sets in [ [, P; and f;: P — B
be defined by fi(p) = [...pi.. .17 % where p; = ji(p).

We define T, = (T, =, &, Veu Foer - o+ Fin - ., Sa> by

V(e = 2 It =K,

keR(x)

>0t =kl k), i€w,

keR(a)NP

TF()le,

ISy, = . [t = 2F(x)g, if «>w

i<w
= 0 otherwise

and the remaining conditions are those of Definition 9.27.3-9 except that K
is replaced by P.

Let G be the group of all permutations of w such that =(n) # n for only
finitely many # € w, and let G,, n € w, be the subgroup of G consisting of all
= € G such that (Vm < n)[=(m) = m].

We extend 7€ G to terms and formulas of our ramified language as
follows:

(k) = k.
7(ty € ty) = w(t,) € n(ty).
w(ty = 1) <~ m(t) = 7(t3).
(@) <> =), n(e A ) <>m(p) A 7(h).
m(Vx*)p(x%)) <> (Vx*)m(p(x?)).
m((VX)p(x)) = (Vx)m(g(x)).
6. w(V (1)) < V(n(t)).
w(S(1)) < S(=(t)).
7. w(Fi(1)) <> Faa(7(1)), [€w.

ViAW —
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So it is only by condition 7 that = is in general not the identity on the terms
and formulas.
Finally, let pt, ..., p* be elements of P. Then for

p= {...pill,...,pin"...}enPi

iew
where p;* = ji (p¥), k = 1,2,..., n, we define #(p) to be
{.. Praps - > Prap- - )

That is, (p) is an element of | [, P; whose =(i;)th coordinate is the counter-
part of p*in P, k = 1,..., n, and whose mth coordinate is 1 if m # =(iy)
for all Kk = 1,2,...,n. Then one can prove by transfinite induction on

Ord (p):
Theorem 12.2. Let pe][%, Pi. Then p i ¢ < =(p) I =(p).

Theorem 12.3. For every formula ¢,

(Vte T)(‘V’p eﬁPi)(ﬂm)(Vw)[weGm%w(z‘) =t A a(p) =¢ A m(p) = pl.

. Proof. Take m to be the maximum of all i € w for which F; occurs in ¢
or ¢t or p; is not 1;. Then m has the required properties.
Now let M be a countable standard transitive model of ZF and
h: |B| — |2| be an M-complete homomorphism. Then N = M[h] is defined
at the end of §9: N = {D(¢) | t € T} where D is defined as in Definition 9.36
except that now

F 2 {peP|h(F(p)D = 1}
and
D(Fl(t)) > D(t) € Fi’ ie w,
D(S(1)) + (Fi < w)D(t = %,°Fi(x,”)).
As in §9 N is a standard transitive model of ZF. Defining S 4
D(2,*15(x,»*1)) we obtain:
S={F|iecw} and SeN.
Furthermore, since [[Fi(_p)]] =fip)=1[...pi...17° for pe P, F; is P-generic
over M.
Let a; be 4(F) i.e.,
a; = {new|@py,p)lnep A <{p1,peF]};, i € w.

Clearly, F;e Nand a; € N for i € w and S € N. With this notation we have the
following:

Theorem 12.4. In A, S is an infinite subset of P(w), and yet S contains
no countable subset. In particular, P(w) is not well-ordered in NV and hence
the AC does not hold in N.
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Proof. Recall that by Lemmas 2 and 3, pages 106-107,
g =a;<F=F, for i,j<w,
and
G(a) = F, for i€w.

First we prove that S is infinite by showing that

lLij<w ANi#j—>F #F,.
Suppose F; = F; for some i, j € w with i # j. Then since F; = D(£,°Fi(x,*)),

p I £0F(x,°) = £.9F(x,%)

for some p such that A([p]~°) = 1.

We can assume that p = {...p;, ..., p;...}. Let p; = <{pt, p® and p; =
{p;', p/>, and choose n € w such that n ¢ p;* U p2 L p;t U p2 Let q be

{. . Q.. q;. ..}

where

q; = {pi* Y {n}, pi®
q; = {pi* i YV inp
(and ¢, = 1, = <0, 0) for k # i, j).
Since /([p] %) = 1, we have p, € F; and p; € F;.

Case I. nea,. Then g, € G(a(F;)) = F;since ¢; < p; € F.. But F; = F;in
N, implies [F(p!)] = [F(pY)] for all p' € P. Hence g; € F;, and by definition
of g;, n ¢ a;. Thus a; # a, contrary to our assumption that F; = F.

Case 2. né¢a,. Then ¢, ¢ F,, so q;¢ F; as above. Consequently since
F;, = G(a,), g £ a; or g2 ¢ w — a;. But pi! < a; and p® S w — a;, so
n € a;. Again this is a contradiction.

This proves 1. So it remains to show that
2. S contains no countable subset”
holds in M.

Assume, in N, that S contains a countable subset. Then, by Theorem
10.12, there exists a term ¢ € T such that for some p

hIPI™®) = 1A pltie =2 2201860,

Throughout this proof we say *“F; appears in ¢ iff p; (the ith component of p)
is not 1, = <0, 0>. Choose n € w such that j < n whenever F; appearsin ¢ and

(Vm € G)[n(2) = t].
By Theorem 10.12, there exists a p’ < p, a k € w and some m > n such that

p/ i t(k) = X% m(xnm)~
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Pick some i/ > m such that F; does not appear in p’, and some = € G, which
permutes i and m, and let p” = #(p’). Then =(t) = t and, by Theorem 12.2,

p" I t(k) = £,°F(x,”). There exists a g such thatg < p’and ¢ < p”.
Then
g it t(k) = 2,°Fn(x,”)
and
g ¥ 1(k) = £,9F(x,).

This is a contradiction.

Remark. We conclude this section with some results which are useful
for certain applications. Returning to the general case, let (<M, P> be a
setting for forcing where M is a standard transitive model of ZF + AC, and
let B be the Boolean algebra of regular open sets of P in M.

Theorem 12.5. If G is P-generic over M and
(VS < P)[S < w A Comp (S)— (3pe P)Vge S)p < 4]

(i.e., every countable compatible subset of P has a lower bound) holds in M,
then every w-sequence of ordinals in M[G] is already in M.

Proof. Let Dy(t) be an w-sequence of ordinals in M [G]. By Theorem
10.9, it suffices to show that {pe P | p  V(¢)} is dense, i.e.,

(Vpe P)3q < p)lg t+ V(1)]
or by Theorem 10.4.5 relativized to M. Recall that the interpretation of ¥(r)
iste M.

1. (VYpeP)3g < p)Ese M)[ght =s].
To prove 1, let pe P and p I+ ““t is an w-sequence of ordinals.” Using the
AC in M, define in M a descending sequence {p; | i € w)» and a sequence
s = <8 | i € w) such that

Po =D, Pis+1 < piand piyy 1 1(0) = 5.
Now let g be a lower bound of all p;, ie w. Theng < pandg -t = s.

Remark. Let P, and P, be two partial order structures in M where M
is a countable standard transitive model of ZF + AC. Let P = P, x P, and
assume that P, and P, both have a greatest element 1. There is a simple
relationship between generic sets with respect to P on the one hand and the
factors P, and P, on the other hand:

Theorem 12.6. If G, is P,-generic over M and G, is P,-generic over
M][G,], then G, x G, is P-generic over M.

Proof. Assume the hypothesis of the theorem and let S be an element
of M that is dense in P. Define

S = {p2€Py | (G, x {pa}) NS # 0}.
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Claim: S, is dense in Ps.
Let g, be any element of P, and define

Sy = {prePy | ({(p} x [g2]) N S # O},

Then since S is dense in P

Vg, € P)Y(3p1s p)Ip1, P> €S A pr < g A pa £ gl

Therefore S, is dense in P; and hence G; N S; # 0. This implies, by definition
of S;, that

(G x [g) NS # 0.

Thus S, is dense in P,. Since S, € M [G,] and G, is P,-generic over M [G,],
Gy N S, # 0 which means, by definition of S,, that

(G, x Gy)yn S # 0.
Therefore G, x G, is P-generic over M.

Theorem 12.7. If G is P-generic over M, then there exists a G; which is
P,-generic over M and a G, which is P,-generic over M [G,;] such that
G = G, x G,

Proof. Let G be P-generic over M and define
G, 2 {preP. |<{p, 1>eG}
Gy = {p2€ P2 | <1, p2> € G}.

Then G = G, x G, (G = G; x G, is obvious. To prove G; x G, < G use
the proof method of Theorem 2.4).

1. G, is P;-generic over M.
Let Se M be dense in P;. Then S x P,e M and it is dense in P, hence
G N (S x P,) # 0 and therefore G; N S # 0.

2. G, is Py-generic over M{G,].
Let Se M[G,] be dense in P,. Then S = Dye5(¢) for some term ¢, and for
some p, = Gy, p, ¥ “t is dense in P, (where F' refers to P,).

Define

E={q,q0€P g Spi At gaet),
A
P = <pls 1>

Claim: E is dense beneath p, i.e.,

(Vr < p)(Eq < r)[ge E].

Take any r < p, r = {ry, ry». There exists an H; such that r, € H; and H, is
P,-generic over M. Consider M[H,]; “Dyyu,(t) is dense in P,” holds in

119



M [H,]. There exists a g, < r, such that g € Dy y,)(f) and hence there exists
g, < r, such that g, " g, €t. Then g = {q,,9,> < randgeE.
Since E € M and p € G, we have, by Theorem 10.11,

GNE#DO.
Let g = <{¢1,9.> € G N E. Then
MI[G,]Eg.€S.
Therefore G, NS # 0 and 2 is proved.
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13. Boolean-Valued Set Theory

The use of ramified language in Cohen-type independence proofs often
requires proofs by induction which may become rather cumbersome in
special cases. A different though essentially equivalent approach which
avoids ramified language is provided by the theory of Boolean-valued models
as developed by Scott and Solovay.

The analogue of the recursive definition of R(«) we define in the following

way':
Definition 13.1. Let B =<(B, +,-, 7,0,1> be a complete Boolean
algebra. Then V,® is defined by recursion with respect to « as follows:
Vo® 2 0.
V. & (| [u: D) — Bl A (3¢ < )[2(w) = V™,  «>0.

pm A U v, m®,

ae0n

Remark. Elements of ¥® are called B-valued sets, these are functions
u from their domain, 2(u), into B where 2(u) itself consists of B-valued sets.

Theorem 13.2. «e Ky — V™ = <o V™.

Remark. In order to obtain a B-valued structure V® = (JV® = &3,

we define = and € in the following way.

Definition 13.3. Foru,ve V®,
L wed 2 > @0)Iu=yD

yeD(v)

2. w=o] 2 [] ) =xeoell- [ [ 0G)=[yeul

x€D(u) yeD(v)

Remark. Thus € and = are defined simultaneously by recursion. Here-
after we will write = and € for = and € respectively.

There are several ways to check that 1 and 2 really constitute a definition
by recursion:

1. The definition of [u € v] and [u = v] is recursive with respect to the
well-founded relation
{(u, vy, <u', vy | rank (v) # rank (v) < rank () # rank (v)}
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where « # 8 is the natural sum of « and 8. (For a definition and elementary
properties of the natural sum of ordinals the reader may consult one of the
following monographs: H. Bachmann: Transfinite Zahlers, Ergebnisse elev.
Math. Vol. 1 (1955), pp. 102f, or A. A. Fraenkel: Abstract Set Theory (1953),
p- 297.)

2. Alternatively, we would use Gdodel’s pairing function J, which is a one-
to-one correspondence between On x On and On with the following property.

Jole, B) < Jo(e, B') <> max (o, B) < max (¢, f')
vV [[max (o, B) = max («, B A [B< B VIE =5 A e <L

If we assign to [u € v] the ordinal Jy(rank (v), rank (v)) and to Ju = 0] the
ordinal max (Jy(rank (u), rank (v)), Jo(rank (z), rank (&))), it is easy to see
that [uev] and [u = v] in 1 and 2 respectively are reduced to [u = ']
and [¥’ € v'] in such a way that the associated ordinals are reduced to lower
ordinals.

3. We would also eliminate € in 2 by substituting the definition 1:

== ] [u(x) =S B0 =ym]

xe2D(u) veZ(v)
11 [v(y)» S o)y = xm]

ve2(v) xed(u)

which is a definition by recursion with respect to the well-founded relation
{Ku, vy, ', v">) | max (rank (u), rank (v)) < max (rank ("), rank (¢'))}. Then
I becomes an explicit definition in terms of =.

Next we prove that the Axioms of Equality hold in V® (see Definition
6.5).

Theorem 13.4. Foru,ve V®,

1. [u = v} = [v = u].
2. [u=ul=1.
3. x€ D) — u(x) < [xeu].

Proof. 1. The definition of [u = v] is symmetric in v and v.
2 and 3 are proved by induction on rank (v). Let x € 2(u). Then

[xeul = > u(y)[x =yl

yeD(u)
hence

ux)-[x =x) <xeu] if xe2
u(x) < [xeu] by the induction hypothesis [x = x] = 1.
Therefore
(Vx € Z(u)[[u(x) = [x e u]] = 1]
and

w=ul= [] [ux) =[xeu] =1

xeD(u)
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Theorem 13.5. Let u, v/, v, v', we V®, Then for each «
1. [rank (4) < «] A [rank (u') < «] A [rank (v) < «]

—[u=ul-luev] < [u ev].
2. [rank () < o] A [rank (v) € «] A [rank (v) < «]

—uev]-[v="1] < [ued].
3. [rank (1) < «] A [rank (v) < «] A [rank (w) < «]

—u=v]v =w] <u=wl

Proof. (By induction on «).

I. If rank (4) < «, rank (¥') < «, and rank (v) < «, then

w=ullued)= > v(y)Iy=ullu=u]

yeZ(v)

< Z v(y)-ly = ] by the induction hypothesis for 3

ye2 )y

= [u' €.
2. If rank (4) < «, rank (v) < e, and rank (¢v') < «, then for y € 2(v)

lu=yl-o(y)loe="0] < [u=y]l-v(y)(y)=[yev])
< [u=yllyer]
< [ued] by 1.

Therefore taking the sup over all y € 2(v)
fuev)-lv =10 < [uer].
3. If rank (¥) < e, rank () < «, and rank (w) < «, then for x € 2(u)

[ = v]-[v = wl-ulx) < [u=20][v=wlxeuy] by Theorem 13.4(3)

< [xev]-[v = w] by 2
< [xew] by 2.

Hence
[u=o]-v=wl< [] [ux)=[xewl]

xeD(w)
and by symmetry,

[u= 1] -[v
Hence by Definition 13.3.2.

wl< [] ) = [xeull.

xeD(w)
[u =0v)v=wl=<u=wl.

Corollary 13.6. Forw, u', v, v',we V®,
3 I bl

1. [u=u]-[uev] < [u €.
2. [uev]-[vo =21 < [ue?].
3. u=v]l-lv=w] <u=wl.

Corollary 13.7. Foru,, ..., u, uy,...,u, € V®,

[y = il -[u, = w)lpQu, - . ., )] < lp(a, - . -, 1)l
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Remark. Therefore V® = (V® = &5 is a B-valued structure for the
language %,. Even more, V® is a B-valued model of ZF i.e. V® satisfies
each axiom of ZF. Here a formula ¢ of the language %, is satisfied by V®
iff [¢] = 1 interpreting € (of %) by €. We shall not give a direct proof of this
statement but use the results of §9.

Definition 13.8. V,® = (VP =€) is defined by

[ = vy = [u = o]
[u € V], 2 [u e v]
for u,ve V,®. (We write [ ], for [ ], m.)

Remark. Thus V,® is a B-valued structure for .%,. Next we shall prove
that this sequence of structures satisfies the conditions specified in §9. (See
Remark following Definition 9.2) Obviously V™ satisfies 1 and 2. We will
now show that V,™ also satisfies 3, 4, and 5.

Theorem 13.9. V,® satisfies the Axiom of Extensionality.
Proof. Letu,ve V,™. Then
[(VX)[xeu<xev]], = H [x€u—xev],- H [xev—xeul,

xeVy(B) xeVq(B)
< J] @x)=Ixe) [ @) =Ixeu)
xeZ(u) xeD(v)

by Theorem 13.4(3)
= [u=v] = [u = vl,.

Theorem 13.10. If we V™), then u is defined over V,™, i.e.,

(Vv e Vi, [[[v eul = > [o=x]x eu]]]~

xeV(B)

Proof. Letuand v be in V{¥,.

[veu] = z u(x)-lv = x|

xeD(u)

< Z [xeu]-[x = 0] by Theorem 13.4(3)
xeDw)

< Z [xeu]-[x = v] since D) < V,®
xeV(B)

< [veu] by Theorem 13.6.

Therefore

veul = > [v=x][xeul

xEVa(B)
Theorem 13.11. For every formula ¢ of %,
(Vay, ..., a, € V,®)3b e VR )(Vae V®)llela, ay, . .., a)l. = [a < b]].
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Proof. Leta,...,a,cV,™ and define b: V,™® — B by
b(a) = [p(a, ay, . .., a,)], for aeV,®.
Then b e V¥, and
laebd] = z lp(@, ay, ..., a)l.-la" = 4]

a’eVy(B)
< [ela, ai, . . ., a)la by the Axioms of Equality.
On the other hand, for ae V,®

[aeb] = [¢(a, ai, ..., a)l.
by Theorem 13.4(3).

Remark. Since the conditions of §9 are satisfied by (V,® | « € On), we
have, by Theorem 9.26, the following result:

Theorem 13.12. V™ is a B-valued model of ZF.
Remark. The following theorem is very useful.

Theorem 13.13. Forue V®,
L [Axewe®] = > u(x)-[pX)].

xeZ(u)

2. [(Vxewe)] = [] @) = e

xe2(u)

Proof. ForueV®,
[Bxewe¥)] = > [x eul-lp(x)]

x’ev(B)

- 5 S uwx = X))

x'eV(B®) xeD(u)

Z u(x) - [p(x)] by the Axioms of Equality
x€D(u)

> [ eul-[p(x)] by Theorem 13.4(3).

x’eV(B)

I

IA

A

This proves 1, and 2 follows by duality.

Definition 13.14. Let B’ be a complete Boolean algebra. Then B is a
complete subalgebra of B’ iff B is a subalgebra of B, B is complete, but in

addition, for each 4 < |B|
[T - [T"4

ZBA — ZB’A’

that is, a class 4 < |[B| has the same sup and inf relative to B that it has
relative to B'.

and
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Remark. WNext we shall show how V can be embedded in V®. As
preparation we prove the following.

Theorem 13.15. Let B be a complete subalgebra of the complete Boolean
algebra B’. Then

L V®c pm,
2. u,0eV® > uev]® = [uev]® A {u= 0] = [u= v]®.

Proof. (By induction)

1. Obvious, since any function into B is also a function into B’.
2. Follows from the fact that [ [ and >, over values in B, are the same in
B and B’ respectively.

Remark. Since any (standard) set ¥ may be identified with the function
Jf« having domain u and assuming the constant value 1 on u, we expect that
V' can be identified with some part of V™. The corresponding mapping is
defined in the following way.

Definition 13.16. For ye V, y 2 {(¥, 1> | x € y} is defined by recursion
with respect to the well-founded e-relation.

Remark. Obviously, ye V'®,

Theorem 13.17. For x,ye V,

. xey—[X¥ejl=1Ax¢y<«[¥e)y] =0,
2.x=y=X=Jl=1Ax#y[f=7]=0,
3. Vue V®)3lve M[u = 5] = 1].

Proof. | and 2 are proved simultaneously by induction from Definition
13.3. Proving this is in fact a very good exercise that we leave to the reader.
In order to prove 3, let u € ¥® and assume as induction hypothesis

() (Vxe2w)HAlze V)x = ] = 1].

(Note that u e V® — Q(u) < V®)

Let y be {ze V| (3x e 2w))[[x = #] = 1] A [x € u] = 1]} (which is a set
by (i), since 2(u) is a set). Obviously, [u = J] = 1 (using (i)). The uniqueness
of y follows from 2 and the Axioms of Equality for V@,

Therefore, identifying V' with the indicated part of V® we obtain an
embedding of Vin V'®,

Exercise. Define ve V® as follows. Let be B and 2(v) = {0, i},
v(0) = b, o(I) = ~b. Then

l.vesd =1
2.[0ev] =b A [lev] = ~b.
3. [ve3] = b.
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Theorem 13.18. Let B be a complete subalgebra of the complete Boolean
algebra B’ and ¢(u,, . . ., u,) be a formula in which every quantifier is bounded
(i.e., of the form 3x e y or Vx e p). Then for uy, ..., u, € V®,

(1) [(P(uh EEEE | un)ﬂ(u) = [{‘P(ulv ] un)H(B,)‘

Proof. (By induction on the number of logical symbols in ¢.) If ¢ is
atomic, (i) is true by Theorem 1[3.15. The only nontrivial case is

o(u, Uy, . . ., Uy) = Bx € wp(x, u, Uy, .. ., Uy).

Then for u, uy, ..., u, € V®,

(i) [ty tys - ooy u)I® = > u(x)-[h(x, hy thys - )| ™
xe(u)
by Theorem 13.13
= > ux) e, u, uy, - - ., 14|

xeD(u)

by the induction hypothesis

= [[CP(U, ul’ S ] un)‘ﬂ(n))
by Theorem 13.13,

since Sy in (ii) is the same in B and B’ (note that Z(v) < V'™ by assump-
tion).

Corollary 13.19. If ¢(uy, .. ., u,) is a bounded formula (i.e., a formula
containing only bounded quantifiers), then for u,, ..., u, €V,

duy, . .., ) < (G, ..., 1) = 1.

Proof. Apply Theorem 13.18 to the Boolean algebra 2 which is a com-
plete subalgebra of each Boolean algebra B and use Theorem 13.17.

Remark. As an application of Corollary 13.19 we give a direct proof of
the following theorem.

Theorem 13.20. V® satisfies the Axiom of Infinity.
Proof. We have e V® < V® and
Ax)[xew] A (Vx€w)@y € w)[xey]
is a bounded formula which is provable in ZF. Hence by Corollary 13.19
[Ax)[xea] A (Yxead)Fyew)xey]]l =1
which is one form of the Axiom of Infinity.

Remark. Another formula with bounded quantifiers is Ord («) which
expresses “« is an ordinal,” hence by another application of Corollary 13.19
we obtain the following.

Theorem 13.21. [Ord (&)] = 1 for each « € On.

Remark. On the other hand, we have the following result.
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Theorem 13.22. Forue V® [Ord (u)] = 2econ [¥ = &].

Proof. [u = &) = [u = &]-[Ord (&)] < [Ord (v)] by Corollary 13.7.
Therefore  4con[u = & < [Ord (w)]. In order to prove [Ord ()] <
S wcon [ = &), note, from Theorem 13.17, that

a# f—>[x=é[x =g <[z=F=0.
Therefore, for each x € V®,
D, = {¢|[x={ >0}

is a set (using the fact that the mapping £ — [x = £] is a one-to-one function
on D, and [x = &] ranges over the set B). Thus D = J,cow Dx is a set, and
taking an ordinal « greater than sup D we obtain

(V8 = o)(Vx € 2W)l[x = Bl = 0].

Therefore

(i) [¢eu] = Z u(x)-[x =¢] = 0.

xeBw)
Since V® is a model of ZF, [Ord ()] =1 and
[Ord () —>ued& vu=&v &eu] =1
1e.,
[Ord ()] < ued) + [u=¢&) + [&dcu] =[ued] + [u = & by (i)
= z [u=£]+[u=4d] since &(¢) = 1

E<a
=>u=£8< > u=_{.
¢<a ¢eOn

Corollary 13.23.
L. [@w[Ord () A $W]] = > [H@)].

2. [(Vu)[Ord () > ¢l = | [ [6@)]-
Proof. -
[@W)[Ord () A $w)]] = Z [Ord ()] -[$()]
< VZ(B) Zo [u = &l [$()] by Theorem 13.22
< Z I$(@)]
< Z(B) [Ord (u)]- [(w)] by Theorem 13.21.

Therefore quantification over ordinals can be replaced by quantification
(in the Boolean sense) over the standard ordinals. In view of Theorem 13.21,
this result corresponds to the fact that M and M [G] have the same ordinals.
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In order to help the reader in getting more familiar with the Boolean-
valued model V® we conclude this section with some examples.

1. [0 =0] = 1.

Proof. Note that 0 in 0 is the empty set in ¥ whereas 0 on the left-hand
side of 0 = 0 is the empty set in ¥®, ie., 0 = a is to be replaced by its
defining formula (Vx)[x ¢ a]. Now for x € V®,

[xe0l= > [x=0]=0 since 2@0) =0  (empty setin V).

e 2(0)

Therefore

[(¥x)[x ¢ 0]] = H(m [x¢0] = 1.
2.0+ 1=(+1)] =1 -
Proof. The meaning of 2 is
(Vpyeavy=ad<~ye(l+ )] =1

To prove this we first note, from Definition 13.3, that
lyed vy =i - (Zﬂé=ﬂ1) + =3

= > b=y

de(a+1)

[y € (e« + )7
Then by Corollary 13.23

[[lyeavy=d<oye(@+ )]

It

(Wyeevy=éa<rye(e+ 1)7]

It
=

3.[0es A (Vxea)[x + 1ea]]
Procf.
[(Vxea)x + leall =] [[# + 1 ed]

new

=[Jltn+1D"es] by2

new
= 1.

3 also follows directly from Corollary 13.19.
4. ForaeV® new-—->[0eca A (Vxea)x + leal—rical = 1.

Proof. (By induction on n.) The case n = O follows from 1.

[((Vxea)[x + 1€al]-lsica] <[+ 1ea]
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hence, by the induction hypothesis and 2,
[Dea A (Vxea)[x + 1ea]] <[(n + D ed].

5.[0ea A (Vxea)x + leal > < a) =1 for aeV®,

Proof.

IA

[0ea A (Vxea)x + leall <[ [lical by4

= [& < 4a].
6. [w=a] =1
Proof. o = a < ¢(a) where ¢(a) is
Oca A (Vxea)x + 1eal A (VP)[0ey A (Yxep)x + 1 €y]

Thus, from 3 and 5, [w = &] = 1. Therefore, w in Y® is &.
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14. Another Interpretation of V®

The aim of this section is to prove that “M is a standard transitive model
of ZF containing all the ordinals” and “V = M[F]” hold in V*® for suitable
M and F (Theorems 14.21 and 14.24).

We introduce a new unary predicate constant M( ) and extend our
former structure V,® = (V,®, =, &> to a B-valued structure (denoted by
the same symbol) V,® = (V,®, =, & M,> by defining

[MW)], = Z [u=K] for uevV,™.
keR(a)
In order to show that the new extended structure V,® is in fact a B-valued
structure, we have to show that the Axioms of Equality remain valid.
Theorem 14.1. u,ve V,® —[u = v]-[IM@W)]. < [M©)]..

Proof. Foru,veV,®,

[u = o]-[M W) olu = k]

Tu

keR(x)

kﬂ = [[M(U)Ha-

I

< Z v
keR(a)

Theorem 14.2. Let ue V{®; and k € V. Then

1. « < rank (k) > [keu] = 0.

2. « < rank (k) - [k = u] = 0.

Proof. (By induction on «.)

1. Let « < rank (k). Since 2(u) < V,™®

keu) = Z u(x)-[x =k) =0
xeD(u)

by the induction hypothesis for 2.

2. Let « < rank (k). Then (3k; € k)[« < rank (k)] and hence by 1

k=ul <] [ keu=0.

kiek

Remark. From Theorem 14.2 the following result is easily proved.

Theorem 14.3. Ifue V,® and « < B, then [M ()], = [M(W)];.
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Remark. Therefore the new structures V,® = (V,® = €, M,) satisfy
the conditions of §9 (p. 87-88) and hence by Theorem 9.26 we obtain the
following.

Theorem 14.4. V = (V® = € M) is a B-valued model of ZF.

Remark. Note that M (u) is a Boolean expression of ““u is a member of

V> where V' = {%|xe ¥V} is a Boolean representation of ¥® which is
isomorphic to V. Therefore we can talk about V in V'® by using the predi-
cate M.

Definition 14.5.  An element b of a Boolean algebra B (which need not
be complete) is called an atom iff b # 0 and

(Vo'e BB <b—b" =0V b =b]

Le., iff b is a minimal element of B — {0}. A Boolean algebra B is called
nonatomic iff B has no atoms.

Remark. A complete nonatomic Boolean algebra B does not have any
complete ultrafilter F, since otherwise [ [,.r b would be an atom of B.
For the following, B always denotes a complete Boolean algebra.

Theorem 14.6. If B is nonatomic and S < B = |B|, then

[16-T] v =0.

beS beB—-S

Proof. Suppose [ [pes &1 [pes-s (Tb) # 0. Then
(VbeB) — [beS A “beS]
and
(VbeB) —w[beB— S A "beB—S]
hence
B—-S={b|beS}

Let by = [ Joes b. If by € S, S is a complete ultrafilter contrary to the assump-
tion that B is nonatomic. On the other hand, if b, ¢ S, then b, € B — S, hence

[T16 T ("b) < bo(~bo) = .

bes beB-S

This is a contradiction.
Remark. For the remaining part of this section, let

B={(b|beB} and F:B—B
be defined by
F(b)=b for beB.

Obviously, Fe V'®,
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Theorem 14.7. If b, is an atom in B and S = {be B| b,
IF=S8]=b,.

< b}, then

Proof. From the definition of § and the fact that b, is an atom it is
easily shown that

beS<« ~"beB - S.

Since, by Theorem 13.16, [X = 5] = 0 unless x = b it follows from Theorem
13.2 that [b € F] = F(b). Then

IF=381=]]IFG®) =1beS1-[ [ Fb)

beB besS
= H (_b)'bo=ﬂb‘bo
beB-S besS
= bo.

Theorem 14.8. [F < B] = 1.
Proof. [F < B] = [Tves (F(b) = [he B]) = 1.

Remark. 1f B has an atom, [M(F)] > 0 by Theorem 14.7. On the other
hand, if B is nonatomic [M(F)] = 0:

Theorem 14.9. If B is nonatomic, then [M(F)] = 0.
Proof. IM(F)] = Siev [F = K]
[F=k]#0-—>0 < [F=Kk]-[F< B] by Theorem 14.8
—~0<[kcBl=]]lteBl=1

xel )

—~k < B by Corollary 13.18.
Therefore [M(F)] = Sqcy[F = S|. But for S < B,

[F=381=[[(Fb)=1beSD-[ [ F®)

bel3 beS
= [] --[]6=0 by Theorem 14.6.
beB-S beS

Hence [M(F)] = 0.

Remark. Since M(u) is the Boolean expression of “ue ¥ we might
expect that M is a model of ZF in the Boolean sense, i.e., [¢M] = 1 for every
axiom ¢ of ZF where ¢* denotes ¢ with all quantifiers restricted to M. We
also write a € M for M(a).

Theorem 14.10. M is transitive in V™ i.e.,

(Yu e V®)[[(Vx € u)[M (u) — M (x)]] = 1].
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Proof. Let ue V®, Because of Theorem 13.13.2 it suffices to show that

[T @ =1Mw)y— M) =1

xeD(u)

1.e.,
(i) (Vx e 2w)[u(x)-[M@w)] < [M)]].
Therefore, if x € Z2(u),
[u = k] < (u(x) = [x € k).
(i) u(x)-[u = k] < [x e k] and
(i) [xekl = D> Ix=Kk] < > [x = k] = [Mx)].

kiek k1eV
Combining (ii) and (iii),
u(x)-z u=KkK < Z [xek] < [M®x)].
kev keVv
This proves (i).
Theorem 14.11. (Vx € V®)3k € V)[[M(x)] < [x € k]].

Proof. Let xe V®, Then x e V®, for some «. Choose k = R(« + 1).
Then
IM()] = D [x = ko]

kosV koeR(@ + 1)

> [x = kollkoe k] < [x ekl.

Koek

[x = kol by Theorem 14.2.2

i

Il

Remark. In fact, in Theorem 14.11 we have = instead of < i.e.,

Ixekl =D [x = d] < [M®)].

aek
Theorem 14.12. M is almost universal in V®, i.e.,
GVueV®)|ucs M—3ye M)uc y]]l =1]

Proof. Let ue V®. By Theorem 14.11, for each x € 2(u) there exists a
k. such that
[M(x)] < [xek.l

(From the proof of Theorem 14.11 we see that we can take
k. = R(e(x)) where o(x) = ps(xe V%,).

Since 2(u) is a set we can then define {k, | x € 2(u)} without using the Axiom
of Choice.)
Let kK = Uxeaw k. Then

s ki= ][] ) =[xekD

x€D(u)

[1 @) =1MED.

xeP(u)

1%
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Therefore,

s Ml< [] @) =IM&) < > [us M)

xeD(u) yeV(B)
< > IMIu < y] = [Eye M)u <yl
yev(B)

Remark. We know that V™® satisfies the Axiom of Pairing. Boolean-

valued pairsets and ordered pairs are defined in the following way.
Definition 14.13. Foru,ve V®:

{u, v} = {u, v} x {1}
™ 2 {u,u} x {1} = {u} x {1}

lu, vO® A {3 ®, {u, v} ®)®,
These definitions are justified by the following theorem.

Theorem 14.14. For u,ve V®,

1. [{u, 0}® = {u, v}] = 1.
2. [{y™ = {u}] = 1.
3. Ku, ®® = <u, vd] = 1.

Proof. 1. It is sufficient to prove
(VX)[x =uv x=v<xe{y, v}®]] = 1.
But this follows from the fact that for all xe V'®

[xe{u, v}™] =[x = u] + [x = ]
=[x=uvx=uv]

The arguments for 2 and 3 are similar.
Theorem 14.15. {k,, k,)® = {k,, k;} and hence
[k k) = {fer, ko)1 = 1.
Proof. Obvious from the definitions and Theorem 14.14.1.
Theorem 14.16.
LIE)E@x )™ =k Ao ) = D [elke ko)l

{keg,keg} =k1

2. [A0AEx, yI®eky A e, DT = D [k, kol

{kg,kg)eky

Proof. 1. In ZF we have

EEx, ¥} = ki A olx, )] < Axek)@y e ky)lix, y} = ky A o(x, y)].

135



Hence by Theorem 13.13.1
[G)Ex, v} = ki A o(x, Y] = Z H{EZ: /23} = ki] ﬂ‘P(kz, /23)]]

{kg.,k3}eky

= Z lo(ks, ks)] by Theorem 14.15.

{ko,kg} =k,
2. Similarly, in ZF

@@V, yiek, A o(x, )< (Azek)@E0)@N)x, ¥} =z A zek, A @(x, »)]
therefore

[Ax)@x, yieky A o, Il = > [ADEx, v} = k A o(x, Y]]

keky

> etk k] byl

keky {ko,k3}=k

= > [tk ko).

(ka.kcabeky
Remark. By the same method we can prove the following:
Theorem 14.17.

L IE0EDKx ) =k A ge, D= > [olks, ko)l

kg, k) =k
2. (@A ek A gle, DT = > plks, ko).
{ka,kadek;

Theorem 14.18. [On < M] = 1.
Proof. Letue V®, Then

[Ord ()] = > [u=¢& by Theorem 13.22

aeln

< > [u=kl =M@l

keV

Remark. Before proving that (in the Boolean sense) M is closed ander
Godel’s eight fundamental operations %, - - -.%;, (See Definition 14.2 Intro-

duction to Axiomatic Set Theory) we prove the following absoluteness
property for the #’s:

Theorem 14.19. [F(k,, k;) = F(ky, ko)1= 1fori=1,...,8.
Proof. By Theorem 14.15 (for i = 1) and the following lemmas.

Lemma 1. [k, N E = (k; N E)’] = 1 where E = {{x,y)> | xe y}.
Proof. Letue V®. Then

ue (ky 0 E) = [E0ENKx, p> eky A {x,p> = u A xeY]]
= Z [u = kg, ks> A ko€ ky] by Theorem 14.17.2
(ko,k3>€k
= > [u=ke =[ue(k, nE)].
koek1NE
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Lemma 2. [(k, — kp) = (k. — ko)”] = 1.
Proof.

ky — ko = {1 | keky} — Kk, 1) | ke ks
=Kk, 1 | kek, — k) = (ky — ko)™

Lemma 3. [(k; ™ ko) = (ky T k)] = L.
Proof. ForueV®,

[ue (ks ™ k)] = [B0EYKx,p) ks A u = Cxp) A xER]D
= > [u=<ka k) nksek] by Theorem 14.17.2

(kg.kqreky

= > [u= ke kol
(kg heg ek
kgekag

= Z [u =kl by Theorem 14.15

ke(kik2)
= [ue(k, ™ k)]
Lemma 4. [k, Nk, = (k;nk)]=1
Proof.

kynky, = {1 kekyn{Kk, 1 | keky}
= {k, 1) | kek, Nky)
= (ky N ko).

Remark. Therefore we need not consider the intersection with k; in
Fiky, ko) fori=5,...,8.

Lemma 5. [2(k,) = 2(k)] = 1.
Proof. LetueV®.

[ue 20k)] = [AX)EKx, y> e ky A u = x]]
= Ju = ki) by Theorem 14.17.2
kgokadeky
= > [u=ki = [ue (k).
k3e%(ky)

Lemma 6. [(k,)"! = (k,")] = L
Proof. ForueV®,

ue (k)1 = [EONENKx, y> eky A u = {p, 0]
= [u = <ks, k2>7]
(g, kadeky
= [ue k"D
Lemma 7.

[{<x,y, Z> l <x5 Z,)’>Ei€1} = {<xaya Z> | <X, z,y) Ekl}vﬂ = 1
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Proof. (By the same method as before.) Let ue V™. Then

we{lx,y, 2 < zyyekil
— [@x, WCx, wy e by A @y, Dl = <2,y A u = <x,p, 2]

= > @@k =y Au= o,y Dl

Kkarkadeky

lu = <ks, ks, ko>l

Ck3z.kadeky <kg,ksd>=kyg

> [u = ks, ks, ko)™

Kkgskaveky <kg,ksd>=ka

= > [u = k]

ke{<ka,ks,kedI<k3, kg, k5>ek1}
ﬂ:ll € {<x’ y: Z> ! <x: z, y> € kl}vﬂ'

Remark. Finally, by the same method, we can prove the following.

Il

Lemma 8. [F(ky, kz) = Folky, ko)] = 1.

Remark. This completes the proof of Theorem 14.19. From Theorem
14.19 we can easily prove the following result.

Theorem 14.20. Fori=1,...,8,
(Vu, ve VO)IM®w) A M) — M(F(u,v)] = 11.
Proof. Letu,ve V™, Then

[u = ki-[u = k] < [F(u, v) = Fky, kz)] by Corollary 13.7
< [#Fu, v) = Fky, k)71 by Theorem 14.19
< [M(Fi(u, v))]-

Therefore,
M@w)]-[M®©)] < [M(F@, ).

Remark. As a consequence of Theorems 14.10, 14.12, 14.18, and 14.20
we have the following.

Theorem 14.21. In V®, M is a standard transitive model of ZF contain-
ing all the ordinals, i.e.,

[(Vu, 0)[Mu) AN veu—>M@)] =1
[(Vw)[Ord (u) - MW)]] = 1.

[#¥] = 1 for each axiom ¢ of ZF where ¢ is obtained from ¢ by rela-
tivizing all the quantifiers occurring in ¢ to M.
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Remark. There is an easier way to show [¢¥] = 1 for every axiom ¢ of
ZF than the one stated above. Let ¢ be (Vx)(x). Then

[$"] = [(VOIM(x) > (0l = [ ] AIMG)] = @)D

uev(B)

=TT (3 = = )

ueV(B) \keV

=[] []@u=FK = [0

ueV(B) kev

=TT T1au =& =@

uev(B) keV

[ .

keV

Now if ¢ is an axiom of ZF, then since ¥ is a model of ZF, (k) is true
for each k € V. Hence, (Vk € V)[[4(k)] = 1], because V® k ZF.
A similar argument shows that if ¢ is (3x)(x), then

[ = > [k

keV

Since V¥ is a model of ZF, (3k, € V)[#(k,)], hence [ib(ko)] = 1.

Since also [F< M] = 1 (by Theorem 14.8) we may consider M[F] in
V®_ In fact, it will turn out that ¥ = M [F]in V®. The proof of this state-
ment is a corollary of the following theorem which shows that the method of
forcing on the one hand and the method which uses the models V® are
essentially equivalent (cf. Corollary 14.23). For the remaining part of this
section we assume the Axiom of Choice (in V).

Theorem 14.22. Suppose that N is a countable standard transitive
model of ZF + AC such that Be N. Let P be the partial order structure
associated with B (thus (N, P} is a setting for forcing). Then for any set G,
which is P-generic over N we can define a mapping h: (V™) — N[G,]
which is onto and satisfies

) ho(le(uy, . . ., u)]) = 1 <> N[Go] E o(h(uy), . . ., A(u,)) for uy, ..., u, €
(V®)¥ and ¢ any formula of Z£,({M}). Here M(a) is interpreted in N[G,]
asae N and h, is the N-complete homomorphism from |B| into |2| asso-
ciated with G,. Consequently

(i) Ao(IMW)]) = 1 < h(u) € N for u e (V¥ ®)V,

Proof. Given G, which is P-generic over N and ho: |B| — |2| where A,
is associated with G, in the familiar way, define A4: (V' ®)¥ — J by induction
as follows:

h(u) = {h(x) | x € D) A h(xeul) = 1} for ue (VB
139



Then we have for u, v € (V®)V,

1. ho(fu = v]) = 1 < h(u) = h(v).
2. ho(lu e v]) = 1 < h(u) € h(v).

1 and 2 follow from the N-completeness of 4, since

hu) = h(v) < (Vx € 2(w)[ho([x € u]) = 1 — h(x) € h(v)]
A (Vx e 2))[ho(lx e v]) = 1 — h(x) € h(u)]

and
h(u) € h(v) < 3y € DE)[A1) = h(y) A ho(ly € u]) = 1].
Furthermore,
3. (Vk e N)[k(k) = k].
This follows by induction on rank (k) using the fact that

h(k) = {h(x) | x € D(k) A ho([x € K]) = 1}
= {h(x) | Qk1 € k)[x = k.]}
= {h(ky) | ky € k}.

Since

(M @)

Il

> lu=kl

keN

keR(a)NN
for some « € On" by Theorem 14.2.2 and the fact that N is a model of ZF.
Hence, by the N-completeness of A,

AIM @)]) = 1« (3k € N)[([u = k) = 1]
< (3k € N)[h(u) = h(k)] by 1
<~ h(u)eN by 3.

Consequently

4. ho(IM@)]) = 1 < hu)e N, ue (V®)N,
Let Fy be F~ B, ie., Fy: |B| — B defined by

Fy() =b for beB.

Then
h(Fy) = {h(k) | ke B A hy(lke F]) = 1}
= {h(k) | ke B A ho(F(k)) = 1}
={b|beB A hyb) = 1}.
Thus

5. G = h(Fy) is the N-complete ultrafilter associated with 4, and G,.

Next we prove that s, preserves all the sums

6. > e®yw [@(xy, Uy, . . ., u,)] where ¢ is a formula of L{M( )}) and
Uiy ..oy Uy € (VBN ‘
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If ¢ is a formula of Z({M()})and uy, ..., u, € (V™)¥, then the sequence
S = elx, ty, . .., u)] | x € (V®)Y) is definable in (N, €, B) and the range
of S, #(S), is contained in B which is a set in N. Therefore, by the ACin N,
there is a function fe N such that #°(f) = #°(S) and hence 6 in N is equal
to a sum over a set in N which is preserved by h, since h, is N-complete.
(Note that we have used the same argument in the proof of 4.) Now let
N, = {h(x) | x e (W®)¥}. Then for uy, ..., u, € (V®)", and ¢ a formula of
LM,

7. ho(lp(ss - - -5 u)]) = 1< Ny F (i), . . ., h(un)).

This is proved by induction on the number of logical symbols in ¢ using 1
and 2, and, for the induction step, the fact that A, preserves the sums 6.
Furthermore, if @ contains the symbol M( ), we understand by 7 that M (a)
is interpreted as @ € N in N, in accordance with 4.

8. Yue (V®YW h(u) e N[G] = N[G,].

Let u e (V®). Then

h(u) = {h(x) | x€ D) A ho([xeu]) = 1}
h(u) = {h(x) | x€ D(u) A [xeu] €G}.

Now [x € u] for x, u € (V™) is definable in N[G] from B, hence h(u) € N[G],
since N[G] is a standard transitive model of ZF. Applying 7 to ¢ where ¢ is
an axiom of ZF, we see that N, is a standard transitive model of ZF and
contains N as a subset (because of 3). Furthermore, G = h(Fy)€ N, and
N, < N[G] by 8. Since N[G] is the least standard transitive model of ZF
containing G as an element and N as a subset we must have N, = NI[G].
Therefore 4 is onto and 7 is just (i).

Corollary 14.23. Suppose that (N, €, B) is elementarily equivalent to
{V,e, B> where N is transitive, countable and Be N. Let P be the partial
order structure related to B. Then for every sentence @ of Z({M( )}), [¢] = 1
(i.e., @ holds in V™) iff N[G] F ¢ for all sets G which are P-generic over N.
(M (a) is interpreted in N[G] as ae N.)

Proof. If [p] = 1in V®, [¢] = 1 in (V®)¥ and the conclusion follows
from (i) of Theorem 14.22. Conversely, if [¢] # 1in V®, then b = [¢] # 1
in (V®)¥ hence taking some /,: |B| — |2| which is N-complete and sends
b to 0, we have, by Theorem 14.22, N[G] F —¢ for some G which is P-generic
over NV.

Remark. We give two applications of this method.
Theorem 14.24. [V = M[F]] = 1.

Proof. Let N = (N, €) be a countable transitive model of ZF + AC
such that Be N and

(N, €,B) is elementarily equivalent to <V, €, B).
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(The existence of such an N can be proved in Gddel-Bernays set theory +
Mathematical Induction.)
V = M[F] can be written as a formula

(Yx)p(M(x), F) where pis a formula of %Z,.
If [V = M[F]] # 1in V®,
b=[V=M[F #1 in (VPP
hence as in the proof of Corollary 14.23
1. N[{G] E = (VxX)p(M(x), G)

where G = h(Fy) and h(b) = 0 for some /:|B| — |2| that is N-complete.
But since M(x) means xe N in N[G], (i) means that V % N[G] in N[G].
This is a contradiction.

Theorem 14.25. (Using the Axiom of Choicein V.) [AC] = 1, i.e., the
AC holds in V®,

Proof. Choose N and B as in Corollary 14.23 (again we need the system
GB + Mathematical Induction). Then N satisfies the AC, and so does N[G]
for every G which is P-generic over N. Hence [AC] = 1 by Theorem 14.24.

Remark. Later we shall give another application of Theorem 14.22.
Problem. Find a proof of Theorem 14.24 that can be carried out in ZF.

Exercise. Give a direct proof of Theorem 14.25.
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15. An Elementary Embedding of V'[F,] in V®

We have seen that in V®, V = M[F]. Since M (u) expresses u € V in the
Boolean sense, we might expect some relationship between the Boolean-
valued structures V[F] and V®. Again let B be a complete Boolean algebra
and F: B — B be defined by F(§) = b for b € B as in §14. Furthermore, let
F, be the identity on B.

Definition 15.1.  We define a mapping j: V[F;] — V® and a denotation
operator D; on the terms and formulas of the ramified language corresponding
to V'[F,] by recursion in the following way (cf. Definition 9.36):

1. jlk) 2k, keV.

2. DV() = [IM((N))].

3. D(F() 2 > Lj(t) = B]-b where « = p(t) + 1.
4. Dt ety) = [ (1) €j(t)].

5. Dt = t) = [j(1) = j(t)].

6. D{(—9) = “Dip), Dfes A 92) = Di(py)- Dy(py).

7. D(VxDp(x.2) = [ | Dia(t)).

teTy

8. j(£59(x,%)) = v where ve V™ is given by

D) = {j(t) | te Ty}
and

W(j(1) = Dye(t))  forteT,.

Remark. We use the notation F(b) for the value of the function F at b
and at the same time F( ) (e.g., in 3) is a formal symbol of the ramified
language. Also [ ] refers to V[F;] and to V*®. Despite these ambiguities it is
hoped that the proper meaning of F and [ ] is always clear from the context.

Theorem 15.2. If u,ve V®,if D(u) < Sand Z(v) = Swhere S = VP,
then [u = v] = [Jues[WEU <> we].
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Proof. Tu = 0] < [Jeesweu--wer] follows from the Axioms of
Equality. On the other hand,

Hﬂweu«-werﬂs H [wewu—werl H W erv—weul

wes wel(u) weZ (v)
< [T o)y =Dweed TT (209) = [weul)
weZ(u) weZ(u)
by Corollary 13.4.3
= [u = v].

Theorem 15.3. (e T,— j(t)e V, ™.

Proof. (By induction on «.) If t = k and ke T,, then k € R(a), i.e.,
ke R(B + 1) for some B < a. Therefore

Jk) =k = {<ky, 1

ky €k}
and
k) = {ky | ke k).
From the induction hypothesis, 2(k) < V,®. Hence
kev® < v,m,

If t+ = %8p(x®) for some ¢ and t € T,, then B < «. For v = j(t) we have, by
the induction hypothesis,

D(v) = {j(t) | te Ty = V,™.
Therefore
ve V%, < V,®.

Theorem 15.4. 1If ¢, ¢, are constant terms and ¢ is a limited formula,
then [p] = D,(¢). In particular,

L. [[11 = tz]] = [[.I(tl) =j(f2)ﬂ-
2. [t e t5] = [j(t) € (2]

Proof. (By induction on Ord (¢).)
1. Let 8 = max (p(t,), p(t5)). Then
Ity =t] =] Jltety < tet,] by Definition 9.27.6

teTy

= H Lj(®) €j(t)) <= j(t) € j(t)] by the induction hypothesis

iy
= [j(t,) = j(t)] by Theorem 15.2
since
2G) < {j(t) | te Ty fori=1,2.
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2. We distinguish the following three cases:
2.1t =k, Aty = k, for some k,, ko € V. Then
[t1 € 1] = [k € ko] = [ky € ko]
= (k) = j(k2)I.

2.2 t, = Pp(xf). Let v = j(£5p(x?)) = j(¢3). Then

Il

[net] = > [y = t][p(t)] by Definition 9.27.5

teTyg

z [j(t) = j()]- DAe(2)) by the induction hypothesis

teTp

= > L) = x]-vx)
xe2 @)
= [j(t) ev] = [j(t) €j(t)].
2.3 t, = k, for some k,. Then
[teks = > [t =4kl by Definition 9.27.4

keko

z L) = K] by the induction hypothesis
kelkq

= [jt) e /22]}

= [j(t) €j(#)]-

Among the remaining cases we need only consider the following.

3. If @ is (Vx®)(x#), then
¢l = [ [ ()] by Definition 9.27.8

teTy

= H D;((1)) by the induction hypothesis
teTg
D((VX")p(x*))
D ().
[t = k] where « = p(z) + 1

keR(a)

Z Li(t) = k] by the induction hypothesis

keR(a)
MG = DV ()
[t = b]- Fo(b) where « = p(¢) + 1

beR(@)NB

Z @) = b]-b by the induction hypothesis

beR(x)NB
= D(F(1)).
Corollary 15.5. (Jo)[j(%,%F(x,*)) = F] = 1.

Il

It

It

4. [Vl

5. [F(1)]

I
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Proof. Choose « = rank (B) and use 5.

Remark. From now on we again assume that V satisfies the Axiom of
Choice.

Theorem 15.6. Under the assumptions of Theorem 14.22, /i(j(¢)) =
Dy, (t) for each constant term ¢ in the relative sense of N. (Cp. the relativiza-
tion of V{F,] to N discussed on page 100. Here F, is also relativized to N
i.e., restricted to BY so that F, € N. F, in Definition 9.36 is to be replaced by

{be BY | ho(Fo(h)) = 1} = {be BY | ho(b) = 1} = G.)
Proof. (By induction on p(7).)

h(j(r)) € h(j(1)) <= ho([j(t) €j()]) = 1 by Theorem 14.22
<> ho([t; €1]) = 1 by Theorem 15.4
<> D(t;) € D(t) by Theorem 9.37

(where we have h, instead of /). Therefore
(Vx € N[Go))[x € A(j (1)) <> x € D(1)]
by the induction hypothesis i.e., 2(j(t)) = D(t), where
D = Dy = Dyog-
Remark. Considering j relativized to N we have mappings
(VIFDY & (V®)" 2> N[G]

and a denotation operator (see Definition 9.36)

(VIF])Y 2295 NIGI.
Theorem 15.6 shows that Dy = /fio .

Definition 15.7. Let B be a complete Boolean algebra and M, and M,
be two B-valued structures. A mapping i: M, — M, (where M is the universe
of M,) is elementary (in the Boolean sense) iff for every formula of the
language of M, and every uy, ..., u, € M;,

lp(uy, - . ., un)HM1 = le(i(uy), . . ., i(“n))ﬂmg-

Theorem 15.8. The mapping j: V[F,] = V® (of Definition 15.1) is

elementary.

Proof. Let N be a countable standard transitive model of ZF such that
B¥e N and <N, e, BY) is an elementary substructure of {V, e, B>. (The
existence of such an N can be proved in GB + mathematical induction.)
Suppose that for some formula ¢ and some uy, ..., u, € (V[F,])".

by = le(us, . .., u)] # lo(j(ur), . . ., j(u)] = by in N.
Let Ay: BY — 2 be an N-complete homomorphism such that

ho(b1) # ho(bz).
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Let G, be the P-generic filter over N associated with k, where P is the
partial order structure associated with B¥. Define 4 as in Theorem 14.22.
Then

ho(by) = 1 < DN(GOI(<P(U1, oy Uy))
> N[GO] }: CP(D(HI): reey D(un))

On the other hand, by Theorem 14.22,

ho(bs) = 1 < N[Go] F o(h(j(w), . . ., j(un)))
<~ N[Go] Fo(D(uy), . .., D(u,)) by Theorem 15.6.

Consequently hy(b,) = ho(by). This is a contradiction.

Problem. 1f B =2, j: V[F,]— V® is onto in the following sense,
(Vo e V®)3x e V[FDIlv = j(x)] = 1], is j also onto in this sense for every
complete Boolean algebra B?
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16. The Maximum Principle

From now on until further notice we will assume the AC for V.

Theorem 16.1. Suppose {¥; |iel} < V® and (Vie)[2(u;) < d] for
some d S V™, Then there is a family {u; | i € I} such that

Lo (vie Dllu; = u] = 1],
2. (Vie D[2(u) = d].

Proof. We extend the domain of u; to d by defining u; € V™ by Z(u;) =
d and (Vx € d)[ui(x) = [x e w]] for i€ [l Then forall ie [,

iy =l = [ (u(x) =[xeu])-1

xe 2 (uy)

[T @ =)

xeD(uy)

H (u(x) = [x € u])

xeZ(uy)

= 1. by Theorem 13.4.3

v

Theorem 16.2. (The Maximum Principle)
@Av e VI)Ewe)] = [¢®)]]

i.e., for each formula ¢ there is a v € V™ such that [¢(v)] maximizes the set of
Boolean values {[(w)] | ue V™®}, ie.,

e = > [p)l.

uevV(B)

Proof. Let b = [Qu)p(u)] = 2.y [p(uw)]. Since B is a set, it follows
from the AC in V, that there is a sequence {u;| ¢ < oy such that
{u1 é < o} < V®and b = 2., [p(u)]. Define

be = [pu)l- | [ I-eu,)] for € < «.

n<é&

Then
&n<aAéFn—>beb,=0 and b= 2. ,b.

Since {u; | ¢ < adisaset, thereisa d = V™ such that (V¢ < o)[D(u,) < d].
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So by Theorem 16.1 we can assume that (V¢ < )[Z(u:) = d]. Defineve V™
by

Iy =d A (Vxe d)lzﬁ(x) => bg.ué(x)]-

E<ax
Then by 1),
) é€a A xed— by v(x) = by ugx).

Therefore, for ¢ < «,

v=ul=]]0x=Ixeuw) []@wx=Ixeu)

xed xed

v

be [ [ () = [xeu]) [ [ ux) = [xeu])

xed xed

> be H (bauts(x) = baus(x))- H (bette(x) = beut(x))
= b,.
Hence b, < [v = u,]-[p(u:)] < [p(v)] for all ¢ < «. Therefore
b < [p()].
But also [p(v)] < ey [@(x)] = b, therefore
b = [p()].

Remark. The last part of this proof also establishes the following
corollaries.

Corollary  16.3. Suppose  {u;| é <o} V®, (b | € <o} S B,
dS V® (V¢ < o)[P(us) = d] and (V€ 7 < &)[£ # n — by-b, = 0]. Then
Que V®)[D() = d A (V€ < &)bs < [u = ul]].
Corollary 16.4. V™ is complete.

Example. For be B defineu =b-& + (=b)-B. If « # B, then
[u=& =bAu=Fhl="bA[O0rd )] =1
In this case (assuming b # 0, 1), u is an example of a non-standard ordinal.

Remark. We have seen that {uc V® |[uev] = 1} for ve V™ is an
equivalence class which is a proper class. Our aim is to find representatives of
v of a simple form. In §6 we defined the notion of a complete B-valued
structure. We now call 4 < V® complete iff the B-valued structure
(A, =, &) (i.e., V® restricted to 4) is complete. Thus 4 = V™® is complete
iff for every partition of unity, {6, | ¢ < o}, and every family {u; | ¢ < o} € 4,
there is an element u € 4, denoted by .., b u,, that has the following
properties:

(Vf < (X)[b{ < ﬂ:u = UEB].
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Later we shall see that for every ve V® there is a ue V® such that
[u = v] = 1 and 2(u) is complete.

Definition 16.5.

0
BUa(B)

UO( B)

B
Ua +)1

e e

it

U,® U U™, o Ky

B<a

v 2 U U, ®,

aeOn

Remark. Thus each ue UM is a function from U,™ into B for some
«, whereas v e V™ has a domain which is in general only a subset of some
V, ™. Nevertheless, U,®™ and V,™® are essentially the same:

Theorem 16.6.
1. U® < V,® in particular,
(Vue UB)EFv e V) [u = v] = 11.

2. VoeV,®)YQue UP)[u =] = 1].
3. U®, is complete.

Proof. 1 and 2 are proved by induction on «. 1 is obvious.
2. Letve V®,. Then 2(v) = V, ™.
By the induction hypothesis, there exists a function f: 2(v) — U™ such that
(Vx e Z)[lx = f(x)] = 1].
Now define ue UM, by
u(y) =[yev] for yelU,™ (cp. the proof of Theorem 16.1).

If x € Z(v), then
v(x) < [xe ]

[f(x) = x]-[x €]

< [0 eol

= u(f(x))

< [f(x) eu] since f(x) e 2(v) = U,®
= [f(x) = x]1f(x) e ul

< [x € ul.

Consequently

u=ol= ]| @) =IxeuD [] @) =IyesD

xeD W) ye Uy (B)

=[] @x = [xeul)

x€2(v)
=1, since for x € 2(v), v(x) < [x € u].
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3. Corollary 16.3 with d = U, ™.

Definition 16.7. 1. Let d < V®, A function g:d—V® is called
extensional iff (Vx, x" e d)[[x = x'] < [g(x) = g(x")]].
2. Let ue V®, Then u is definite iff

(Vx € (u))[u(x) = 1].
Example. k is definite.
Exercise. Letue V® and b € B. Define b-u by
Db-u) = D) A (Vx e DW)(b-u)(x) = b-u(x)].
Then,
[veb-u) = b-[veu]
and

[b-u=>bv]="b+[u=0v] for veVm®

Remark. The importance of extensional functions rests in the fact that
functions (in the sense of ¥ ™) from definite sets into definite sets correspond-
ing to (real) extensional functions on their domains:

Theorem 16.8. Let u, ve V™ be definite and ¢: 2(u) - Z(v) be an
extensional function. Then

e VOIlfiu—v] =1 A (Vx e ZW)[f(x) = ¢x)] = 1]].
Proof. Define
f={xex0® | x e 2w} x {1
Obviously, fe V®, We will show that [f:u—v] = L

L [(Vxew@ e ppefll= [ 2> Kxyefl
xeD(u) ye2(v)
since u, v are definite

[ 1 Kx o) efT

xeD )
since @: D(u) — Z(v).

v

=1 by definition of f.

Furthermore, we have to show that
o 2. [(vxe wW(W(V2)[Kx, yyef Ax,zpef—y =z]l = 1,
le.,
i) (Vxe 2w)(Vy, ze VP)Kx, y> ef A <{x,z2p €f] < [y = Z]].
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Therefore let x € D(u) and y, z€ V™®. Then

[Kx, > ef1 = Zg Kx, > = <, (x'D]
x'eZ(u)
= > [x=x1Iy= ¢
x'e2D(u)
< > p) = o(x)-[y = ¢x")]
xesw since ¢ is extensional
< [y = o)l

This shows that

K, pefl-Kx, 2> ef] < [y = e(¥)]-[z = ¢(x)]
I

<
<[y=1-

which proves i) and hence 2. From 1 and 2 we conclude that
Ifiu—v] = 1.
It remains to show that
3. (Vx e 2l f(x) = e(x)] = 1].
Let x € 2(u). Since fe V™® and g(x) € V® we interpret f(x) = g(x) to mean
@Nx, y> ef A y = g(x)]. Therefore

[f(x) = ¢()] = [@NKx, > ef A y = ¢(X)]]
= Kx, p(x)) €f] since[fru—v] =1
1.

Remark. Later we shall see that Theorem 16.8 has a converse if we add
an additional requirement on u and v. See Theorem 16.28.

Definition 16.9. ue V® is extensional iff

(Vx, y € 2W)[x = y]-u(x) < u(y)].

Remark. Therefore u is extensional iff the extended structure

< V(B)’ = b é’ L_l>
where
i#(x) = u(x) if xe2(u)
=1 otherwise

is still a B-valued structure (cf. the requirements of Definition 6.5). Another
interpretation can be obtained from the following result.

Theorem 16.10. Ifue V®,
u is extensional < (Vx € 2(u))[u(x) = [x € u]].
Proof. 1f uis extensional and x € Z(u), then

u(x) < [xeu] = > u(y)lx =yl < u(x),
veD(u)
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Therefore
u(x) = [x € ul.
To prove the converse, assume (Vxe 2(u))u(x) = [xe€u]]. Then, for
x, y € D(u)
[x = yl-u(x) = [x = yl-[xeu] < [yeu] = u(y).
Theorem 16.11.

Moe VE®YYd = VB [2@) < d—
(3u) [u is extensional A d = 2(u) A [u = v] = 1]].

In particular, each v € V™® can be represented by an extensional set.

Proof. ForveV®andd < V® such that 2(v) < ddefine u: d — B by
(Vx € d)[u(x) = [x € v]].
Then, for xed
ux) < [xeu] = > [yeol-lx = y] < [xev] = u(x),

yed

i.e., u is extensional. That [u = v] = 1 has already been proved in Theorem
16.1.

Remark. We could restrict ourselves to extensional sets u for which
u(x) is simply equal to [x € u] for x € Z(u). However, since one still has to
evaluate [x € u] for x ¢ D(u), this is in general no saving, though for special
cases it may be very convenient to have a particular representation of B-
valued sets.

Given any ve V®_  we cannot expect to have [u = v] = 1 for some
definite u. We shall prove, however, that [u = b-v] = 1 for some definite u
and some b € B.

Definition 16.12. 1. ue V® is uniform iff u is extensional ard Z(u)
complete.

2. § < V™ is complete iff the structure (S, €, =) is complete in the sense
of Definition 6.8.

Remark. As a consequence of Theorem 16.11 we have the following.

Theorem 16.13. (Vv € V®)Qu e V®)[u is uniform A [u = v] = 1].

Proof. If veV®, pyeV®, for some « Then, by Theorem 16.6.2,
[v = v;] = 1and v, € UP, for some v,. Since D(v,) = UP,, is complete, by
Theorem 16.11,
[v,=ul =1

for some u € V® such that 2(u) = U®, and u is extensional. Hence
[u=v]=1
and u is uniform.
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Theorem 16.14. Let u be uniform. If {x; | ie I} < 2(u) and
{b;|iel} = B
is a partition of unity, then
“(Z b,-xi) = Z b,u(x;).
iel / iel
(See Remark following Theorem 6.9.)

Proof. Let y = >, bx;. Since D(u) is complete, y exists, and y € D(u).
Since {x; | i€ I} € P(u),

uy)=lyeul = 2 u(x)-Ix=yl= > ulx)lx =yl = D u(x) b
xeD(u) iel iel
(Note that since {x; | ie I} € 2(u), [x; = y] = b;.)
On the other hand since >, b; = 1,

bi-u(y) < [xi = yl-[yeul < [xieul = ux)
bu(y) < bi-u(x)

u(y) < 2 bai(x).

Definition 16.15. (NVue V®)[sup (v) 2 > e U(x)]
Theorem 16.16. (Vu e V™®)[sup (1) = [(Ix)[x € ul]].

Proof.
[(@xxeul] = [Erewlx = x]] = > ux)-[x = x]
xe&(u)
= z u(x) = sup (u).
xeZ(u)

Corollary 16.17. (Vuy, us € V®)[[u, = uy] = 1 —sup (#;) = sup (u2)].
Theorem 16.18. Let v € V™® be uniform and b € B. Then
{(xe2(u) | b < u(x)}
is complete.

Proof. Let {b;|iel} be a partition of unity, and {x;|iel} = D(u)
satisfying (Vi € I)[b < u(x,)]. Since 2(u) is complete, y = >,.; b;x; for some
y € D(u).

u(y) = > bu(x) by Theorem 16.14
iel

> > bob=0b

iel

ye{x|xe2@) A b < ulx).
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Theorem 16.19. If u e V® is uniform, then (3x € Z(u))[u(x) = sup (v)].

Proof. 1f we do not require x € Z(u), the theorem follows from the
maximum principle. In fact, we can use the same argument:
Let {x; | £ < o> be an enumeration of %(u), i.e.,

D) = {x:| ¢ < o}
and put by = u(x,) [ [<e (Tu(x,)) for £ < «. Then the b.’s are disjoint and

Z b, = z u(x) = sup (u).

i<a xeY(u)
Therefore, adding b, = ~sup (u), <b. | ¢ < «) is a partition of unity. Since
D(u) is complete, (V€ < «)[b: < [x = x.]] for some x € Z(u). Hence

u(x) = [xeul = > ulxy) [x = x]

&<
> z b = sup (1) = u(x) by definition of b, and sup (u).
E<a
Therefore
u(x) = sup ().
Theorem 16.20. Let ue V™® be uniform. Define ve V® by Z(v) =

{ylye2w) A u(y) = sup (w)}and (Vy € 2(v))[v(y) = 1]. Then v is defintte,
uniform, and [u = b-v] = 1, where b = sup (u).

Proof. Clearly v is definite. If x and y are in 2(v), then [x = yJe(x) <
v(y). So v is extensional. Therefore to show that v is uniform, it suffices to
prove that 2(v) is complete. For this purpose, let {; | £ < «} be a partition
of 1 and let {y. | £ < «} © 2(v). Then we have to show that there exists an
a € 2(v) such that

L. (V¢ < o)[by < [a = y]].
Since 2(v) < D(u), {y: | £ < «} = 2(u). By the uniformity of u there exists
an a € 2(u) such that 1 holds. Therefore it is enough to show that a € 2(v).
Since

by < [a =y — be-u(yy) < [a=yd-u(ys) < ula)
it follows that
b= > bob < ua).

(¢<a

But, since b = sup (u), we have u(a) = b and hence a € Z(v).
Next we shall show that [u = b-v] = 1. First, if x € 2(v) then by Theorem
16.10, [x € u] = u(x) = 1; hence

u="b-vl= [] W =I[xeboll- [ [(b-0)x) = [xeull

xeD(u) xe2(v)
2. =[] we) =5 > [x=1]]
xeD(u) te2(v)
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since the second factor is 1. Let x, x, € £2(u) with u(x,) = b. Then since
w(x), ~u(x)} is a partition of unity and u is uniform, there exists a
z€ Z(u) such that z = u(x)x+ (“u(x))x,. (See Remark following Theorem
6.9). By Theorem 16.14

u(z) = u(x)-u(x) + (u(x))- u(xy)

u(x) + (Cu(x))-b = b.

Therefore u(z) = b, since b = sup (u); and hence z € 2(v). Then
u(x) = b- z [x =1]

teZ(v)

v

u(x) = b-[x = Z]

> b-u(x) = b-u(x) since u(x) < [z = x].]

3. 1.

Since x is an arbitrary element of Z(u), we have [u = b-v] = 1 by 2 and 3.

Corollary 16.21. (Vu e V®)(3b € B)(Tv € V®)[v is definite and uniform
Alu=b-v] =1].

Exercise.
[. Let ue V™ be extensional and b € B. Then
[u = b-u] = [sup (u) = b].
As a consequence,

[b = sup (W)] — [[u = b-u] = 1]
[b < sup W)]—[[u=>5b-u] <1}
[u = 0] = ~sup (u)
b-ica =[b-1=11+[p-1=0] ifa>1
=b+ (7h)
1.

2. Define ue V™® by
D) ={1,2} A u(l) = b A u@) = -b.

Then sup (u) = [(3x)[x € u]] = 1. Furthermore, defining a = b-1 + (~5)-2
(See Remark following Theorem 6.9) and v = {a}® we have, [u = v] = 1.
3. Define u, a;, a;, ve V® by

D) = {1,2, 3 A u(l) =b A u@) = u®) = -b,

al = b‘i + (-b)'i

a;=b-1+ (b3

v = {a;, a;}®.
Then [u = v] = 1.

Remark. The results which we have obtained so far can be used to

determine the power set (in V®) of various sets in V'®,
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Theorem 16.22. Let v e V™ be extensional, ue V®, and b = [v < u].
If v = b-v, then

1. v’ is extensional,

2. esul =1,
.veu] = ="l
Proof.

1. Is obvious.

2. v s u) = I_[ @' (x) = [xul)

xe9D(v)

= I—[ (v = u}-[x ev] = [x €ul) since v is extensional
xeZ(v)

= H vcunxev—>xeu]
xeD(v)
=1
B fv=v]=w=v]Wcu<vcul=> by 2
[v=0v]=[v=>b-v]=b by Exercise 1 above.

Hence[v = v'] = b =[v € u].

Theorem 16.23. Let u, v e V® be extensional and [v € u] = 1. Define
v" by the conditions

1. 2(v') = 2(u).
2. (Vx e 2(u)[v'(x) = [x € v]]

Then v = v'] = 1.

Proof. v’ is extensional and [v' < ¢] = 1 by the definition of »'. It
remains to show that (Vxe Q@))[[xev] < [xe€v']]. Let xe D(u). Since
vesu =1,

[xev] < [xeu].
[xev] = [xev]-[xe€u]

Il

Z [xev] u(x) [x = x]

x'e€eD(u)

Z [x" €v]-u(xN[x = x']

x'€Z(u)
2 veu)[x = x]
x'eD(u)
< [xe?].
Remark. From Theorems 16.22, 16.23, and 16.11 we obtain the
following:
Theorem 16.24.
Vu,ve VB e V®)DW) = 2w A cu =1
Av<u] =[="11]]
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Remark. This theorem is important for the treatment of power sets in
V®, Namely, if ue V® and we regard elements v € V™ which are subsets
of u in the sense of V® i.e., [v < u] = 1, then Z(v) may be greater than
2(u), and, in fact, there is no set d = ¥'® which includes Z2(v) for all these v.
However, by Theorem 16.24, we can find some v’ such that [v' € u]] = 1,
[v = ¢'] = 1and 2(v) = 2(u). As a corollary, we have the following:

Theorem 16.25. fu,ve V® and if
A={"eV®|20)=2w) AV cu] =1}
then
bsul= > [v="1vl

vV'EA
Proof. 1f b = 3 ,calv = v'] then from Theorem 16.24
[veu] <b.
On the other hand,
b< > eullv=0]<[v<

V'EA
Remark. As an application, we determine R(&) in V'®,
Theorem 16.26. For ue V'™
L fueR&) = > [u=ov]l=[ueV,® x {1},

VEV,(B)

therefore [R(¢) = V,® x {1}] = L.
2. 9u) < V,® > uc< R = 1.
3 us R@) =D [u=t]

te Ay
where 4, = {te V® | 2(t) = V,®}.
Proof. (By induction on «.)
. [ue R@®)] = [(3F¢ < &)v = R

= > [u< R@)]
<

= Z z [u=t] by the induction hypothesis for 3
&< ted:

=> > [u=t] (for,if 2(t) = V:®,
E<a teVy,1(B)
@' eVRD2E) = V:® At =t'] = 1))

= 2 [u=14]
veV(B)

= > [u

veV(B)

ue V,® x {1}].

v](Ve® x {1)()
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2. Assume 2(u) < V,®. Then, since by | [xe R(&)] = 1 for xe V,®,
us R = [] (ux) =[xeR&]) = 1.

xeZ(u)
3.fu= R@)= > [u=t] byl and Theorem 16.25
e r@I=1
= > u=t] by2
teAy

Theorem 16.27. 1If u is definite, [Z(v) = BZ™ x {1}] = 1.

Proof. Note that BY™ < F® and B%“ js a set. Let xe V® and
A, = {ve V® | D) = P(u)}. Then
[xe B2® x {1}] = z [x = 1]
vEAy
= z [x = 0] since u is definite
et
=[x € u] by Theorem 16.25.
Remark. Next we prove the converse of Theorem 16.8.
Theorem 16.28. Let v, v e V™ be definite and uniform. If fe V® and

[f:u—v] = 1, then there exists a (real) function ¢: Z(u) — 2(v) such that
@ 1s extensional and

(Vx € 2W)[[f(x) = p(x)] = 1].
Proof. Since [(Vx e u)(3y € v)[f(x) = y]] = 1, and u and v are definite

(txe2)| 3 1760 == 1]

yeD(v)

For x € Z(u) define v’ € V® by
(") = 2(v) A (Vy e 2DV (y) = [f(x) = Il

Since v is uniform, so is v’. Therefore, by Theorem 16.19, for each x € Z(v)
we can find some y, € Z(v) such that

[fx) =yl = > [f(x) =y] =1
yeD(v)

Using the AC, there is a function ¢: Z2(u) — Z(v) such that
(Vx € ZW)IIf(x) = ¢(x)] = 1].

It remains to show that ¢ is extensional.
Let x,, xo € 2(u). Then since [fru —v] = 1
[x: = xo] < [f(x1) = f(x2)]
= [f(x1) = fx)]-[f(x1) = o(x)]-[f(x2) = @(x3)]
< lp(x1) = (x2)].
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17. Cardinals in Y

The theorems of this section can be obtained from the corresponding
results in the theory of forcing by translating them in the manner outlined in
Corollary 14.23. However, since this translation requires the existence of
elementary subsystems of ¥ and thus cannot be carried out in ZF, we shall
try to give direct proofs in V®, Corresponding to the fact that every cardinal
in M[G], where {M, P) is a setting for forcing and G is P-generic over M, is
a cardinal in M we have the following.

Theorem 17.1. If « is not a cardinal, then [— Card (&)] = 1.
Proof. — Card () -~ (3)3B < )[f: B —a A W(f)* = .

Therefore — Card («) <> (3f)$(f, «) where ¢(f, «) is a bounded formula.
Thus, by Corollary 13.18, if « is not a cardinal,

[6(/, &)1 = 1
for some fe V, hence
[— Card (&)] = 1.

Remark. As might be expected, for finite cardinals and for w we can
prove the converse of Theorem 17.1.

Theorem 17.2. For every « < w, [Card (&)] = 1.
Proof. We have to show that
[-@ENEB < D B—a AW (f)=dll=1
ie.,
(e VOB < )If: f—& A #(f) = & = 0].
Suppose that on the contrary,
b=[fif—&AW(f)=¢& >0 forsome feV® B < a.

Then b < [(vV7 < @3¢ < AHIAE) = 7l

i)o<[] >0 =r

n<a &<fB
[Note: LeE (€, 1) be the formula that expresses f(€) = ». Then [f(§) = %]
means [(¢, 9)].]

*W() = GoKxy> e fI
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Now let us assume that « < w. Since 8 < «,

b ] 2 1@ =l

n<B+1 &<8

= > 1 e =1l

efB+1) n<p+1

by the (8 + 1, B)-DL, (see Definition 4.1) which holds for every B since 3 is
finite.
Therefore

0<b [] Lflem™) =41 forsome @:B+ 1—p.

n<Bf+1
There must exist #, m < 8 + 1 such that n #m' A ¢(n) = ¢(m). Then
blf((e(m)") = #l-[f(p(m))") = m]
blii = m]  since b < [f((p(m)”) = f((¢(m))]

0 since n # m.

0

A A

This is a contradiction.

Remark. It is easy to see that the same proof can be used to show: If B
satisfies the («, )-DL, where « is a cardinal, then for each cardinal y < «,
[Card ()] = 1, i.e., cardinals < « remain cardinals in V™. (It can also be
shown that we only need the («, 2)-DL since (e, 2)-DL <> («, «)-DL.)

In general, Theorem 17.2 does not hold for all cardinals. However, cor-
responding to Theorem 11.8 we have a converse of Theorem 17.1. For a more
general result we introduce the following definition.

Definition 17.3. Let y be a cardinal. A Boolean algebra B satisfies the
y-chain condition iff

(VS < B)(Vx,yeS)[x # y—x-y = 0] =S < y].
In particular, B satisfies the w-chain condition iff B satisfies the c.c.c.

Theorem 17.4. Let y be an infinite cardinal and suppose that B satisfies
the y-chain condition. If « > y is a cardinal, then [Card (&)] = 1.

Proof. As in the proof of Theorem 17.2, suppose that [Card (&)] # 1 for
some cardinal « > v, then defining b as before, we have for some B < «, and
fe V(B)’

Db<[] > 1/ =4 where b>0.

n<a &<f

Therefore, using the AC in V,
(V7 < )3, < PIb-1/(E) = 71 # 01.
For ¢ < B define

Ae={n < e|&= ¢
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Then for some ¢, < B,
i) A, > 7,
since otherwise (V& < B)[A4:. < y]. But @ = s, .4 s, s0 this would imply

& < By < asince B,y < «. This is a contradiction.
Consider

S =1{b-[f(€&) = 4] | ne Az}
Then forpe 4., &, = &, and hence
b-1f(€x) = Al = b-[f(&) =51 # 0
sinceb < [f1f—=& A& =] =1.
Therefore elements of S are # 0. Moreover, if 9, n, € A:, A 7y # 72,
b-If(€) = il [f ) = #al < iy = % = 0.

Therefore elements of S are mutually disjoint and S > y, by ii). But the
existence of such an S contradicts the assumption that B satisfies the y-chain
condition.

Corollary 17.5. If B satisfies the c.c.c. and « is a cardinal, then
[Card (&)] = 1.

Remark. This means that cardinals are absolute if B satisfies the c.c.c.
We can express this fact also in the following way:

Corollary 17.6. If B satisfies the c.c.c. then (Vo)[[(w,)” = w] = 1].
[Note: For the meaning of this formula see the note stated in the proof of
Theorem 17.2.]

Proof. (By induction on «.)
We have already proved the case « = 0 at the end of §13. Therefore
assume « > 0 and (V¢ < o)[[(ws)” = wz] = 1]. Since

U = w, <~ Card (1) A (V¢ < a)[w,: < u]
A (Vo)[Card (v) A (V€ < o)[w: < v] —u < V]]
is provable in ZF, we have

[u = wz] = [Card (W)]-[(V¢ < &)w, < u]]
I(Vv)[Card (v) A (V€ < &)[w: < v]—u < v]]].

We wish to prove that [(w,)” = ws] = 1. By Corollary 17.5, [Card ((w,)")] = 1.
(V€ < Doy < (w) T = [ ] [z < (w)]

E<a

= H [(w:)” < (we)] by the induction hypothesis

<
= 1.
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Finally, let
by = [(V)[Card (t) A (V¢ < Hwg < 8] > (w)” < oll]

= [ Jiacard (DI- [ Jlwz < #D) = [(w.)” < 4]
neln E<a
Let ne On. If nis not a cardinal, [Card ()] = 0. Therefore, we need only
consider the case Card (). Then [Card ()] = 1 and

H [w: < H] = H we)” < ] by the induction hypothesis.

E<a <

Hence

[T lw: <] # 0— (V¢ < @)w: < 7]
E<a

— wy < 7
— [(we)” < 7] = 1.

This proves

[(¥7 € On)[([Card (D]- [ [ [w: < D) = [w)” < 4] = 11.

I<a

Therefore b, = 1. Thus [{w,)” = wg] = 1.

Remark. Finally we mention a theorem which says that constructible
sets are absolute in the same sense as ordinals, i.e., quantification of con-
structible sets (in the sense of V®) can be replaced by quantifications (in the
Boolean sense) over the standard constructible sets. Let Const (x) be the
formal predicate expressing that x is constructible in the sense of Godel:

Definition 17.7. Const (x) & @3v)[0ord (v) A x = F(v)]
where F is Godel’s constructibility function. (See Definition 15.13, Introduc-
tion to Axiomatic Set Theory.)

Theorem 17.8. (Yue V®)[[Const ()] = > . [u = X]].

Proof. ForueV®,
[Const (u)]

[E[Ord (v) A u = F)]]
= > [u=F@)] by Corollary 13.23

aeOn
In the proof of Theorem 15.28 in Introduction to Axiomatic Set Theory we
established that x = F(x) is equivalent to a formula (3f)$(f, x, «) where
#(f, x, «) is a bounded formula. Then

x = F(o) > 3N/, x, @)
— AN, %, &) =
—[@N$(f, %, D] =
—[¥=F@] = 1.

|
[y

by Corollary 13.19

|
[
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Therefore, [F(«)” = F(&)] = 1 and hence
[Const )] = > [u = F&)] [(F()” = F(&)]

aeOn

> u = (F(@)"]

aeln

> [u =%

xeL

I

Remark. In the same way as we derived Corollary 13.23 from Theorem
13.22 we obtain the following corollary of Theorem 17.8.

Corollary 17.9. [@uw)[Const (u) A e@)]] = > .er [@(X)].
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18. Model Theoretic Consequences of the Distributive Laws

There are several algebraic properties which are satisfied only by certain
complete Boolean algebras B but which have important consequences for the
corresponding models V®, e.g., by Theorem 17.1 and Corollary 17.5,
cardinals are preserved if B satisfies the c.c.c. In this section we will consider
certain distributive laws.

Theorem 18.1. [ZP(w)” < P()] = 1

Proof.

(Vs € w)[[§ € o] = 1]
(Vs € w)[[$§ € Pw)] = 1]
[P(w) < P(&)] = 1.

Theorem 18.2. B satisfies the (w, 2)-DL iff [#(w)” = P(&)] = 1.

Proof. Assume that B satisfies the (w, 2)-DL. We need only show that
TA(5) € P(w)”] = 1. Therefore let r € B“‘® such that [t < «&] = 1. Define
by, = iiet], by =[Aé¢t] for new. Then (Vn € w)[b,; = ~b,0l,

1=T](w+bu)=2 []buew  bythe (w,2)-DL

n<w $€29 new

> [ Wiet]< st

5622(5) new

= > [t=s] since[[2g(51]=1

Il

se22(%)
= [t € P(w)"] since as is easily shown
LteV®» > [t=s]=[ecP(w)]
5e22(5)

Hence
[t e P(w)] = 1.

Therefore, by Theorem 16.25,if 4 = {t € BYY | [t = &] = 1} then
ue?@)] = > [u=1t]

teA

:Z[[u

ted

< > [ue P(w)] = [ue P(w)7].

teA

1]-[t € P(w)7]
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This proves that [#(d) € P(w) ] = 1. Consequently [P(w)” = P(d)] = 1.
To prove the converse, assume that [#(¢) = P(w)”] = 1, and let

{bplnew Ai€2} < B.
By Theorem 18.4 (below) we can assume that
(Vn € w)lbro = ~bul.
Define ue V® by
D(u) = Z(s) A (Yn € w)u() = byl
Then

[u<s o] =1,

[ue ()] =1
and by assumption
[ue ?(w)’] = 1.
1 =[uePw)] = z [u = s] by 1 above

se22(&)

Z H (71 € u] = s(i1))

se2Z(8) new

Z n bn.s(n)'

SE29 new

Since also 1 = [Tpew (bro + b,1), this completes the proof.

Remark.
1. Inthe same way as we proved Theorem 18.2 we can prove the following:
B satisfies the (o, 2)-DL iff [2(&) = P(«)] = 1.

2. Interpreted in the theory of forcing, Theorem 18.2 says: Let <M, P)
be a setting for forcing, let G be P-generic over M and let B be the
M-complete Boolean algebra in M associated with P. Then B satisfies the
(w, 2)-DL in M iff P(w)" = P(w)"9,

Exercise. Give a direct proof of 2.

Definition 18.3. Let « be a cardinal. B satisfies the restricted («, 2)-DL
iff for all families {b;; | ie I A j < 2} < B such that / = « and

(Vie Db = byl

we have
H (bio + biy) = Z H b; ra-
iel fe2l iel
Remark. Although this is a special case of the («, 2)-DL, the two are
equivalent:
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Theorem 18.4. B satisfies the («, 2)-DL iff B satisfies the restricted
(e, 2)-DL.

Proof. We can assume that « is an infinite cardinal. Suppose
{a; |iel ANj<2}< B

where I = «. Define T = (I x {0}) U (I x {1}). Then 7;~= «. For fe2T
define fy, f1 € 27 by

Jili) = £(G, 0)

L) = fG, 1) foriel.

Because of Theorem 4.2 it suffices to show that

H (@0 + ain) < Z H isiy-

iel fe2! el

LetJ = {j|j = <i,nywhereiel A n < 2}. Forj = {i, n) € J define
bjo = Qi n, bjy = "ain,

and let

b= H (a0 + ai1).

iel
Then (VjeJ)[b;o = ~b;1], and since b < (a0 + aiy),

i) b-bi,oon < i
ll) b'b(i,l)n < di1-n fOI' iE[, n< 2.

A

Since [Jje; (bjo + bj1) = 1,
1= z H biri by the restricted («, 2)-DL,
fe2T jeT
= H b(i,o).fo(i) n b(i,l).fl(i)-

fo.f1€2! el iel

There, using i) and ii)
b < | I i, roct) | I ai,1 -1,
fo.f1€27 iel iel
< Z I—I i, riiy

re2! el

Remark. Other forms of the (o, 8)-DL can be obtained from the
following theorem.

Theorem 18.5. Let I, J be sets. Then the following conditions are
equivalent:

1. For all families {b;; | ie Il A jeJ} S B,

l | zbu: z l lbmi)
iel jeJ feJl ieJ

(i.e. B satisfies the (Z, J)-DL).
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2. For all families {b,; | ie I A jeJ} € B,
(er JI)[Hbif(i) =0— I_I Z b[j = O“
iel iel  jeJ
(i.e., in order to prove the (Z, J)-DL we need only show that the left-hand side

is 0 if the right-hand side is 0).
3. For all families {b;; |ie I A jeJ} < Band any b € B,

(Vfe J’)[H by = 0] A (‘v’ie])[z by = b] —~b=0.
iel jel
Proof. We need only show that 3 implies 1. Therefore let
{bi;|iel A jeJ} = B.

Let

| b=112bs-2 1Tt

iel jeJ fe2! ieJ
a; = b-by foriel,jel.

Because of Theorem 4.2, we have to prove that b = 0.

Say=b3 b= 3 0([1 3 ber 5 [Touro)

jeJ jeJ jeJ i‘el j'el JeJl ier
=5
and for feJ’:

H iy = b- H by = 0.

tel ier

Applying 3 to the family {a;; | i€ I A jeJ}, we obtain b = 0.
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19. Independence Results Using the Models V®

Theorem 19.1. Let B be a complete Boolean algebra which does not
satisfy the (w, 2)-DL. Then [V # L] = 1in V®,

Proof. (By the method of forcing.) Let M be a countable transitive
model of ZF such that (M, e, B¥} is elementary equivalent to {V, €, B), let
G be P-generic over M (where P is the partial order structure in M associated
with B¥). Then, by Theorem 18.2

P(wM © P(w)HC,

However, if M [G] satisfies ¥ = L, then M [G] = M. This is a contradiction.
Therefore M[G] F V # L and hence [V # L] = 1in V®,

Exercise. Give a direct proof of Theorem 19.1 in V®.

Remark. We shall now present new proofs of the independence of
certain axioms from the axioms of ZF + AC by using the models" V™ rather
than the technique of forcing.

Theorem 19.2. If B is a complete Boolean algebra satisfying the c.c.c.
and the cardinality of Bis < 2%, then assuming the GCH in V we have that
the GCH is B-valid in V®,

Proof. Since (w,)” is definite,
[P((wy)) = BZW@ x {1}] = 1 by Theorem 16.27.
By assumption, BZ¢“2" has cardinality < (2%)% = X, by the GCH in V.
Therefore there exists a (real) function
?: D(was1)”) —22> B2,

Furthermore ¢ is extensional:

Uy, Uy € D(we41)”) = (381, 0y € wy Iy = S1 A Ug = é2]

— [y = wo] # 0 —u; = us)

o [Ty = ug] # 0 — [p(try) = @(uz)] = 1]
— [y = ug] < [o(uy) = o(us)].

By Theorem 16.8 there is an fe V® such that

[f: (wg41)” = P((wr))] = 1
169



and
(V¢ < w0 )IIAE) = o] = 1].
" 1) (V€ € (wer DG € P(w))]]
[T /& e2(w)

§<Wg+1

[T 9@ e?(w)]

§<We+1

TT 1) eBoe x 1] = 1.

F<Wa+1
ii) [(Vx € P((w))(3Fn € (wa s D) (0) = xI]
= ] [@re@er))fC) = x]]

I¥

xeB2(@e)¥)
= [ [Gre (eI = o]l
§<wa+1
since ¢ is onto
= 1.

Therefore [W(f) = ?((w,)”)] = 1Dbyi)and ii). This proves that

[290" = (wgs1)] = 1

200" = (wey1)] = 1 by Corollary 17.5.
(Vo)[29% = wgsy] = 1 by Corollary 17.6
[(Ve)[29 = wyy ]l = 1 by Corollary 13.23, i.e.,

[GCH] = 1.

Theorem 19.3. Let 7= be an automorphism of B (= € Aut (B)). Then =
can be extended to an isomorphism

VD s P®
such that for every formula g and vy, ..., u, € V®

(e, . . ., un)] = [@(m(ua), . . ., 7(ua))].

Proof. Note that any automorphism =: |B| — |B| is complete since
(Vby, by € B)[by < by~ (b)) < m(by)]. We define w: V® — V® by induction
as follows: Let u € ¥V®. Then m(u) € V® is defined by

Dn(u) = {n(v) | v € D(u)}
and
(Vv € 2))[n(w)(=(v)) = 7(u())].
It is easy to prove by transfinite induction that
#([u = v]) = [=(u) = =(v)]
w([u e v]) = [=(u) € n(v)]
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Also m: V® . V® s onto. (Consider #~1: V® — }® the extension of
71 This =~ ! is the inverse of the extended =.) The conclusion then follows
by induction on the number of logical symbols in ¢.

Theorem 19.4. Let P be the partial order structure used in the proof of
the independence of V = L (Definition 11.1) and let B be the complete
Boolean algebra of regular open sets of P. Then 0 and 1 are the only elements
of B which are invariant under all automorphisms of B*.

Proof. Let be B and 0 < b < 1. Then there exist p and g such that
[p] € b and [¢q] = ~b. By Theorem 11.6, 3= € Aut (P) such that =(p) and ¢
are compatible. Using = to also denote the automorphism on B induced by
7 we have #(b)-(7b) = #([p])-[q] > 0. Therefore =(b) #b.

Theorem 19.5. (cp. Theorem 11.7) Assuming the GCH, there is a
Boolean algebra B such that the GCH is B-valid in V® but the statement
“There is a definable well-ordering of Z(w)”’ is not B-valid. (Here by ‘‘de-
finable” we mean ‘“definable using constants k as parameters”. Note that k
corresponds to the constant k € C(M) in Theorem 11.7.) “There is a definable
well ordering of 2(w)” is in fact a statement in the language of set theory.

Proof. Let B be as in Theorem 19.4. Then B < 2% and B satisfies the
c.c.c., hence the GCH is B-valid in V™. Suppose there is a definable well-
ordering of #(w) in V™, ie., there is a formula ¢ (possibly involving con-
stants k) such that ¢ well orders Z(w), i.e.,

H{x, vy € P(w) x P(w) | (x, )} is a linear ordering] = 1
and
[(Vx € P(w)[x # 0— 3! zex)(Vy e x)p(z, y)]] = 1.
Define
S ={xeB?®|[xeP(w)] =0} x {1

We shall prove that

) ExeS=1A[S< Pw)] =1, but

i) b =[3'xeS)VyeShe(x, y)] = 0.
This gives a contradiction.

Define ue V® by 2(u) = 2(&) and

(Vi € w)[u(i) = [{{n}, 0717°].

Claim: [u € (Z(w))"] = 0.

ue P(w) = > [u=3]
and for s € w,
lu = 3] = [ ] @)= 3560)-

* Some authors then say that B satisfies the 0,1-law.
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Suppose [u = §] #0 and let {py, po> € [ Tneq @(1) <> §(1)). Then

/

[{pup2r]l = (ﬂ (u(ri) = 5(;1)))

new

and hence

(V415]2)[<‘]1g(]2> eP A {q,q> < {p1, P> A
— [Kg1, 92 0 () (i) <= $(1)) # 0

new

Choose some n € w such that n ¢ p, U p, and define ¢ = {q,, g2~ by

41 = D1 ooy
=poty O
=P e s = o
g2 = P2
Since
(u(i1) <= 5(1)) = u(ii) if 501 =1
= ~u(i) if (1) =0
and ~u(ii) = [0, {n}>]7° (by the exercise fdllowing Corollary 11.4) we have
{1, g2 < {p1.p2>and [<qy, 201N Mpew () - 5(A)) = 0, a contradiction.
Therefore [u = §] = 0 for all s < w, and hence
[ue P(w)] =0

as we claimed. Therefore 2(S) # 0 and hence [(3x)[x € S]] = 1. This proves
i).

If 7 € Aut (B), and # is the isomorphism from ¥™® into V™ induced by
m according to Theorem 19.3, then #(k) = k and hence S is invariant under
#. Therefore b is invariant under all 7= € Aut (B). Suppose b # 0. Then
b = 1 by Theorem 19.4. Define v € V™ by

Z(v) = 2(&)
(Vn € w)[e(i) = [(Bx € S)Vy € S)le(x, y) A 7€ x]]].
Since b = 1, by the maximum principle there is a u, € V™® such that
[uo€ ST =1 A [(Vy € S)g(uo, )] = 1.

Tug = 0] = H Fieu, ~rer]

new

= [ [1Gxe $)(Vye S)px, ) Afiex]«-fer] sinceb =1

new

=1 by the definition of v.

Therefore [v € S| = 1. But for every n € w v(si) is invariant, hence v(si) = 0 or
1, i.e.,
vE 29((5).
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Therefore [v = (P(w))”] = 1.
Since v € 2(S) this implies that

1=peSl= > x=u< > [xe@)1=0

xe%(S) xeZ(S)
This is a contradiction which proves ii).

Remark. Next we give a new proof of the independence of the Con-
tinuum Hypothesis, however this time we use a measure algebra B. Let 7 be
an index set of cardinality > 2%, let X = 2“*/ be a generalized Cantor space,
A the o-algebra of all Borel sets of X, N the o-ideal in & consisting of all the
null sets for the usual product measure, and finally let B = #/N. Basic open
sets of X are of the form

U(po) = {ppe2°* A p(j1) = po(j2) A -+ A p(jn) = po(Jn);

where po: {Ji, ..., juy —2and ji, ..., J, € w x 1. Without proof we shall use
the fact that there is a (unique) measure m for subsets of X such that

m(U(po)) = ()" and m(X) = 1.
With this notation we are prepared to prove the following.
Theorem 19.6. B satisfies the c.c.c. and therefore B is complete.

Proof. Let S < B be a set of mutually disjoint elements. We have to
show that § < w. Therefore we can assume that0¢ S. Let S, = {b|beS A
m(b) = 1/n} for n e w. Since the elements of S are mutually disjoint and

m(X) = 1,5, < nforall n€w. Since S = Unew Sr, this proves that S < w.
Since # and N are o-complete, so is B = #/N, and therefore B is complete
by Theorem 3.27.

Remark. For this particular Boolean algebra B we can prove that the
negation of the Continuum Hypothesis is B-valid in V®.

Theorem 19.7. For B defined as above, [« CH] = 1in V'®.
Proof. Define B-valued sets u; € V'™ for i € I as follows:
D(u) = D()
(Vn € )[u(ii) = {p€ X | p(n, i) = 1}/N].
Obviously,
1. (Vie D[y = &] = 1].
Proof. Leti,jel, i # j. Then
v = u] = H (w(77) <> uy ()

new

= {P € XI (Vi’l € w)[p(n) l) = P(naj)]}/N7
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since the Boolean operations in B are the corresponding set theoretical
operations. Let

Sy = {pe X | (Vnew)pn, i) = p(n, ).
We have to show that S;; € N, i.e., S;; has measure 0. For arbitrary & € o let

Ry,...,N,Ew be different natural numbers and
P1s - 5 Po* be an enumeration of all functions in 2@},

Define, for 1 </ < 2%,
uy = {pe X|pny,i)=pn) A--- A pln, i) = p(ny)
A p(ny, j) = plng) A -+ A plng, j) = ping)}.

Then S;; € uy U---Uug and m(y) = 1/2%%, hence m(S;) < 2¢-1/2% =
1/2%. Since k was arbitrary, m(S;;) = 0. Thus

2. (Vi,je i # j—[u; = u;] = 0].

Similarly, s € w — [u; = §] = 0.
Therefore

3. (Vie D][u; e (P(w))7] = 0].

Since B satisfies the c.c.c., wy, in V™, is &,. Therefore

[- CH] = [- @S P(8) <575~ (w1)7]]
If [ CH] < 1, then by the maximum principle,

b =[f: A@) 5> ()] >0 for some fe V™,
By 1,
(Vie D[[E¢ < a)[f(w) = £]] = b]

(ien| 3 1w =2

F<wy

Now we proceed as in the proof of Theorem 17.4:
Since [ > 2%, there exists an 7 S w, such that J = {iel|u = 7} is
uncountable. Moreover, if i, je Jand i # J,
b-[f(w) = 71-[f(wy) = 4] < b-[f(w) = fuy)]
<fuy=u)=0 by 2.
Therefore

{b-[f(w) =4l | ieJ}

is an uncountable subset of B, the elements of which are pairwise disjoint.
However, the existence of such a set contradicts the c.c.c. in B, Therefore, we
must have [« CH] = 1.

Exercise. Prove Theorem 19.7 by using the Boolean algebra of Theorem
11.10.
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20. Weak Distributive Laws

Again B denotes a complete Boolean algebra.

Definition 20.1. B satisfies the (w, w)-weak distributive law ((w, w)-WDL)
iff for every family {bp | n, M€ w} & B
[12 bwm=2 11 2 bum
m<w n<@© few® new m<f(n)

Similarly, if w, is not cofinal with w, B satisfies the (w, w,)-weak distributive
law iff for every family {b,s |n€w A £ < w,} S B

LT 2 b= 2 TT 2 bue

n<w &<wg fewg® new &<f(n)

Remark. If ¢f(w,) > o, the right-hand side of 1 is equal to

2 T2 b

N<wg n<w <7

Theorem 20.2. If B satisfies the c.c.c. and ¢f(w,) > w, then B satisfies
the (w, w,)-WDL.

Proof. Let {b,:|n < w A € < w,} = B. Then by the c.c.c., for each
1 € w there exists a countable set C, = B such that

Z b, = sup C,.

§<wg

Define no = sup {£ < w, | (3n € w)[b,s € C,J}. Since ¢f (w,) > w, 10 < w,and

(VnEw)[ > b= > bns],

E<wg {smo
hence
[T 2 b= 2 112 bu
n<w E<wy nN<wg nNEwW &N

Theorem 20.3. If ¢f(w,) > w, then B satisfies (w, w,)-WDL iff
lef(w,)” > o] = 1.

Proof. Assume that B satisfies the (w,w,)-WDL. Let fe V® and
b=[f &= ()], 1e.,
b = [(Vx € )3y € (w) VD)X, 2> €f <z = Y]]
=TT > WK zpef<z= £l

new &¢<wqg
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Define b,. = 1f(i) = £], which should be understood as
[(V2)[KA, ) e f <z = €]l

Then
b=T] > bu
n<w &<Wq
= > J1 2 b by the (w, w,)-WDL
N<wg n<w £<7
= [(Fn < we)"(Vn < w)[f(n) < 7]l
Since

[ef (wa)7) > @] = [(VNO]If f: & — (wg)” then (Fn < (w)")(Vr < &)[f(n) < 7]]],
this proves [¢f((we)) > o] = 1.
To prove the converse, let {b,: |n < w A ¢ < w,} & B and assume
lef ((we)”) > @] = 1. Define
feV® by Df) ={,EP | new A E < o),
(Vn e w)(VE€ < w)[f(, £5®) = b,,].

Then again

D Ifio—(w)T=]] EZ bre

and

i) [/ & = (@)1 [@n < (@))Vn < S <all= 2 [] D bas

N<Wg n<w &sn
But, since [¢f((w,)”) > o] = 1.
[f: & = (0)7] < [(In < (w)")Vn < &)[f(n) < 7]l
Therefore, by i) and ii),

[1 2 b= 2 ]2 bu

n<w ¢<wg N<Wyg n<wW <N

Remark. Next we interpret the (w, w)-WDL:
Theorem 20.4. B satisfies the (w, w)-WDL iff
[(vg)lif g: & — & then (I € ()" }Vn € w)[g(n) < fM]]] = 1,

i.e., if we define a partial ordering < for the number theoretic functions by
f<g<=(n < w)[f(n) < gr)] for f,gew®, then in V™ the standard
number theoretic functions (elements of (w®)™) are cofinal in the set of all
number theoretic functions.

Proof. Assume that B satisfies the (w, w)-WDL. Let g € V™ and define
b=[g:o—d
bum = [g(A) = ]
for n, m < w as in the previous proof.
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Then

b=11 2 bum

n<e m<w

= > [] 2 bum by the (v, w)-WDL

fEW® n<w ms<f(n)

> [ lsth < fun1

few® n<w

[Gf € ()" )V < a)[g(n) < f(n)]].

The converse is proved similarly.

Il

b

Definition 20.5. A Boolean o-algebra B is a measure algebra iff there
exists a strictly positive o-measure m on B, i.e., a function from |B| into
[0, 1], the closed interval of real numbers between 0 and 1, such that

(Vbe B)b # 0—m(b) > 0] A m(1) =1

and

(Vb e B (Vi,j < w)[i # j—bi-b; = 0] — m( > bi) => m(bl)]-

i<w i<w

Remark. Note that a measure algebra always satisfies the c.c.c. and hence
it 1s complete.

Theorem 20.6. Every measure algebra B satisfies the (w, w)-WDL.

Proof. Let{b,,|n k < w} < B. Then for every real ¢ > 0

(Vn < w)(3le w)[m( > b — > bn,c) < £/2"]~

k<w ksl

Therefore 7 _

(Ve > O)3f € wNVn < w)[m( Z by — Z bn,‘i) < 5/2"]-

k<o ks fn) / -
Since
Hbi—ncis Z(bi—ci)’
(Ye > 0)(3f € w”)[m(n >bw—11 2 bnk) < 2e|-
n<® k<o n<e k=sf(n) E

Therefore

[T2bw=2 11 2 bu

n<w k<o few® n<w k=<f(n)

Theorem 20.7. The Boolean algebra of all regular open sets in w® does
not satisfy the (w, w)-WDL.
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Proof. Define b,, = {pew®|pn) =m} for n,m < w. Then b,, is
clopen and therefore it is regular open. Obviously,

[12 bm=1

n<w m<w

but

2 11 2 bm=0.

few® n<w m<f(n)

for otherwise there exists some f € w® such that

0[] 2 bwm=]]{pew|pr) < fin)°

n<w mxf(n) n<w

= [T {pcw?|pm < fn).

n<w

Then there exist ny, .. ., 1y, 1, .. ., [; such that

) {pew?|pln)=">5L A - Apln) =1}

= (N trew lpw < s0)

n<w

Choose some ng ¢ {n,, ..., m} and l, > f(ny). Then by 1),

{pew®|p(ng) =Ilo A -+ A pln) =L} O ﬂ {pew®|p(n) < fln)} # 0,

n<w

Since this intersection is empty we have a contradiction.
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21. A Proof of Marczewski’s Theorem

Definition 21.1. A set a is quasi-disjoint iff
Vx,yea)|x# y—>xnNy= (4]

Remark. From Definition 21.1 a set a is quasi-disjoint iff x ¢ (\(a)
implies that x is in at most one y € a.

Theorem 21.2. (Erdés-Rado) Let o, y be cardinals with y 2_2‘(0. Then
(VxX)[xe A — % < a] A (Vx S A)[x is quasi-disjoint — F < y] > A < »*.

Proof. For each § < «* we construct a set 4, < A4 such that

a. (V6 < «*)[4; < y*] and

b. 4= 4.

d<at

This proves the theorem since A < 2%.9% = y* We define A4, by recursion:
For convenience we start with 4_, = 0. Suppose A, for & < B (where
B < «*) has already been defined. Let

£ = (Ul

6<8
For each K < E; let

and let K* be a maximal quasi-disjoint subset of K. Moreover, we require
that if

(3S, TeK)[SNT = K]

then K* contains all such S and 7. In this case, () K* = K, since K* is
quasi-disjoint. Finally,

Ay = | J{K* | K < Eg}.

Claim: {4, | 8 < a*} satisfies conditions a and b.
Clearly, A, = A. We prove a by induction on 8 < «*: Suppose § < a*
and (V8 < B)[A; < »*]. Then E; < a-y® = y* since (Vx € 45)[X < «]. For

K < E,, K* < y by assumption. Since K* # 0K # 0 A K < o,
Ay = | J{K* | K< E; A K < @,
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Since E; has at most (y*)* = * subsets of cardinality < «, 23 < Yy =%
To prove b, suppose that

A— ) 4, #0.

d<at

LetS€A — Jycq+ As,and for 8 < o™, let K, = SN E,. Since S € K;, K} # 0.

Claim: (V8 < «™)Y3T e KF[S N (T — E,) # 0].
Suppose (VT € KF)[S N (T — E,) = 0] for some 8§ < «*. Then

(VTekKHSNTSSNE, =K, = TN E|
since T € K;. Therefore
(VTeKHSNT = K,

Since K} # 0, by our requirement on K3

() K = K,.

Therefore K} U {S} is quasi-disjoint. Since K is maximal, S € K} < A4;. But
this contradicts our assumption that Se€ A — | J,<,+ 4,. Therefore we can
choose x,, T, such that

V8 < a®)T, e KF A x, €SN (T, — E)].
S<B<at—x,eT, | JA, S E A x, ¢ Ej.
So{x,|8 <«*} < Sand {x, | 8 < «*} has cardinality «*. This is a contra-
diction, since S€ 4 and hence S <o

Remark. Engelking and Karlowicz used this result to prove the following
theorems:

Theorem 21.3. Let «,y be cardinals with y > X,. Suppose that 4 =
{A;| te T} and {B, | t € T} satisfy the following conditions:

1. (VteT)[4, < o« A B, < 7]
2. (e, ' €Tt # t'— A, N B, #0 A 4,0 B, = 0].
Then T < y~.

Proof. Note that 4 = T by 2. We will show that A4 satisfies the condi-
tions of Theorem 21.2. Let {A4,|teT,} be quasi-disjoint, 0 # T, = T.
Choose t, € T, and define

Ct = Al N Bio for te To - {lo}.
Then we claim that

1) (Vte Ty — {t})[C, # 0], and
i) Ve, t'eTy — {toDt # t' — C, 0 C,. = 0].

Claim i) follows from 2. Claim ii) we prove in the following way.
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Suppose x € C, N C, forsome t, t" € Ty — {to} with t # t’. Then
xeAd,NA = () Ar
t7eTq
since {A,. | t" € Ty} is quasi-disjoint
x€Byn () Ar S ByN A, =0.
t"eTo

This is a contradiction.
Therefore, for each re T, — {t,;} we can pick x, € C; < B,, such that
t,t'eTy — {toyand t # t' — x;, # X,. Hence

:jfo < Eto < Y-
Corollary 21.4. Let y be a cardinal with y > X, If

1. VteT)[A, < w A B, < y].
2. (Vt, '’ et #t' = A, N B,.# 0 A A, N B, = 0],

then T < y.

Proof. Let AW ={Ad,|teT A A, = n} for new. By Theorem 21.3
(for a = n), AW = " =y,

Since d = {A, | 1T} = Upco AP, A =T < y.

Theorem 21.5. (Marczewski) Let / be a set and {X,]| i€/} be a family
of topological spaces such that each X; has a base b; of cardinality < y. Let
X = [Tier Xi be the product space. If {0 | reT} is a family of pairwise
disjoint open sets of X, then T < .

Proof. We can assume that X;n X;, =0 for i i’ and X, eb; for
i,i'el. Let

Pj3HXi—>Xj, jed,

iel
be the canonical projection,
Oj(‘) — p}‘O(t)
be the jth-component of O®.
Since O® isopen, {ie I | O, # X} is finite and O;® is open in X; for each

i€ l. We can assume that

Vie H(Vt e T)[O® # 0]
and

(Vie H(Vt e T)[O® € b]],

since each O/ contains a basic open set. In order to apply the previous
corollary, define

A,
B,

) blbebAbn0O® =0}, teT.

iel
0y Xy
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Then (VieT)[A, < w A B, <y] since {iel|O® # X} is finite and
Yie Db, <yl
1. VteT)[4,n B, = 0].
Suppose not. Then for some te€ T, and i € [,
0®e A4, N B,

i.e., 0,%€eb;and 02 N O, = 0 forsome jel Since X; N X; =0 for i # J,
we must have i = j, but then

oY N o®=0.
This is a contradiction.
2. t,t'eT ANt#1t'— A, N B, # 0.
Let#,t"eT, t # t'. Since OY N 0¥ = 0,
Fie D[OY N O = 0].

Then O, € 4, N B, and hence we have 2. Therefore Corollary 21.4 applies,
and we have T < v.

Corollary 21.6. If {X;|ie [} is a family of topological spaces (I a set)
and each X has a base of cardinality < y, where y is an infinite cardinal, then
the Boolean algebra B of all regular open sets of the product space [ [ie; X,
satisfies the y-chain condition. In particular, if each X; is 2nd countable
(i.e., X; has a countable base) then B satisfies the c.c.c.
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22. The Completion of a Boolean Algebra

For the following let X be a topological space, and let S = X be a subspace
of X with the relative topology. The topological operations —, °© and ~5, °8
refer to X and S respectively.

Theorem 22.1.

.LAS S—>AS=4"NS.
2.AS S A% =85 — (S — A)-.

Proof. 1. Let A < S; then obviously
A5 A~ NS
Conversely, let pe A~ N S. Then
PeS A(VN(P)IN(p) N A4 # 0]
(YN(p)HIN(p) N SN 4 # 0] since A & S

| (YNS(P)IN(p) O A # 0]
ie.,
peAS,

2. Follows from 1.

Theorem 22.2. If 4 < S, if Sis dense in X, and if A is regular open in
Sthen 4 =A47°NS.

Proof. Let A = S be regular open in S. By Theorem 22.1.1, 45 =
A~ N S. Then, since A~° N Sis open in S,

AN S < (47505 = 4.

On the other hand, if p € A4, then since A4 is open in S, there exists a N(p) such
that N(p)" S < A. Since Sisdense in X, N(p)< (N(p) " S)~ < A~. Thus
peA N S.

Theorem 22.3. Let S be dense in X and let 4, B be regular open (in X).
ThenANS< BNS—A4< B.

Proof. A=ANnS - cANS)"<(BNS)" < B~

A
A

B-° since A is open
B since B~% = B.

n-in
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Theorem 22.4. 1If S is dense in X and A is regular open (in X) then
A N S is regular open in S.

Proof. We need only show that (4 NS) 5% < A=°N S for by the
proof of Theorem 22.2 we know that the reverse inclusion holds. Let

pe(An S§)=5%,
then

ANPHIN(p) NS (ANnS)"NnS] by Theorem 22.1
N(p)=NpnS = N(pNnS)"c(ANS)" < A4".

Thus
peA~°nNS.
Remark. Asaconsequence of Theorems 22.2-22.4 we have the following.

Theorem 22.5. Let S be dense in X and let B and B, be the complete
Boolean algebras of all regular open sets in X and S respectively. Then B,
and B are isomorphic. An isomorphism i: B, — B is given by

bo = l(bo) N S fOI‘ b() € Bo.

Proof. For bye By, define i(by) = b,~° Then i: B,— B and b, =
i(by) N S, by Theorem 22.2. Let b € B. Since b N S is regular open in S (by
Theorem 22.4), i(b N S) =b. Therefore i is onto, is one-to-one, by
Theorem 22.2, and by Theorem 22.3 it preserves <.

Definition 22.6. Let B, be a Boolean algebra (which need not be com-
plete). A completion of By is a pair {B, /) such that:

1. Bis a complete Boolean algebra,
2. h: By — B is a monomorphism (i.e., one-to-one),
3. if Daea by = b in By, then 3,4 (b)) = h(b) in B,
4. h“(By — {0}) is dense in B — {0}.

Remark. Our next result shows that every Boolean algebra has a com-
pletion which is unique in a certain sense.

Theorem 22.7. Let B be a Boolean algebra (not necessarily complete) and
Jet P = (P, <> be the partial order structure dctermined by B, i.e.,
P =B —{0}and < is < in B. Let B be the Boolean algebra of all regular
open sets in P and let j: B— B be defined by

Jj(©0) =0 A (VpeP)j(p) = [p]l.
(Since P is fine we have by Lemma 5.22 that [p] = [p]~°.)
Then (B, /> is a completion of B. Moreover, if (B;, f) is any completion
of B, then there exists an isomorphism
k:B 222, B,
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such that the diagram

S
T~

W «——

k
1
commutes, i.e., ko j = f.

Proof. j“Pis dense in B because {[p] | p € P} is a base for open sets in
P. Repeating the proof of Theorem 1.30 we see that (B, j> is a completion of
B. If (B, /> is any completion of B, S = f** (B — {0}) is dense in B, — {0}.
Thus by Theorem 22.5 the Boolean algebra of regular open sets of S is iso-
morphic to the complete Boolean algebra of all regular open sets in B, — {0}
which is isomorphic to B; by Theorem 1.40, and hence also to B. This gives
an isomorphism k: B — B, as required by the theorem.

Remark. By “the” completion of a Boolean algebra B we will mean the
Boolean algebra B defined in Theorem 22.7. We will regard B as a subalgebra
of B by identifying B and j*B.

Theorem 22.8. Let X, Y be topological spaces and let /1 X — Y be an
open continuous map onto Y. Then for B < Y we have,

L (f"H“B7) =({"H"B)".
2. (DB = ((f7H B
Proof. Let xe(f~Y)*“(B~). Then f(x) € B~ and hence

(YNCNIN(f(x)) N B # 0]
(YNE)[[“N(x) N B # 0] since f is open
(YNQE)IN(x) N (f~1)“B # 0].

Thus
xe((f~H"B)".

On the other hand, ((f~)“B)~ < (f~1)*“(B~)since (f~1)*“(B ~)is closed. This
proves 1.
2. Follows from 1 since f'is onto.

Remark. From Theorem 22.8 the next result follows easily.

Theorem 22.9. Let X, Y be topological spaces and let f/: X — Y be an
open continuous map onto Y. Then f induces a complete monomorphism
i: By — By such that

(Vb € By)[i(b) = (S~)b],

where By and By are the complete Boolean algebras of all regular open sets
of X and Y respectively.
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Remark. Let By, B; be complete Boolean algebras and let i: B, — B, be
a complete monomorphism. Define

Py =Py, <> and P, = (P, <)

by Po = By — {0}, P, = B, — {0}. We would like to define an open continu-
ous mapping

f: P1 onto PO

such that the associated complete monomorphism from B, into B, is i. For
this purpose, define #(b,) = inf {b, | b; < i(by)} in B,.

(We use by, b, as variables ranging over B, and B; respectively.) Under
these assumptions we can prove the following.

Theorem 22.10.

by < i(#(by)).

by = 0— #b,) = 0.

#(i(bo)) = bo.

by < i(bo) <> #(by) < bo.
bo‘#(bl) = #(i(bo)‘bl)-
i(bo) by = 0— by-#(b,) = 0.

SN e i e

Proof. 1-4 follow from the definition of #. (Note that B, and B; are
completed and so is i.)

5. i(bo)-by < i(bo-#(b1)) by L.
#(i(bo)-b1) < bo-#(by) by 4.

Suppose #(i(b)-b1) < by-#(b,), then

by = (i(bo)-by) + (by-(Ti(bo)))
< i(#(i(bo)-b1) + #(b1-(Ti(bo)))) by L.

Since b, < i(#(by)),
i((Tho)-#(b1)) = i("bo)-i(#(b1)) = (Do) by by 3,

(Tbo) #(b1) = #("i(bo)-b1) by 4,
hence
by < i(#(i(bo)-by) + ((Tho)-#(b1)))
by < i((bo-#(b1)) + (~(bo) #(b1))) by assumption
by < i(#(by))

Thus we have

by < i(bo) < i(#(b)
where by = #(i(bo)-b1) + #(b,-("i(by))) which contradicts the definition
of #.
6. Follows from 5.
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Theorem 22.11
L (# 1)“[bo] = [i(bo)]-

2. #is an open continuous map from P, onto P,.
3. The complete monomorphism from B, into B, associated with # is i.

Proof.

1. bye(# 1) [bol <> #(b1) = bo
< by < i(bo)
<= by € [i(bo)].

2. # is continuous because of 1. We will show that #“[b,] is open for
every b, € B;.

Let by € #°[b,]). If by < b,, then since # is order preserving by < #(b:)
and hence

by = by #(by) = #(i(by)-by) by 5 of Theorem 22.10
e 7 [b1],

hence [by] < #“[b,].
# is onto by Theorem 22.10.3.
3. Obvious from 1.

Remark. Next we prove that # is uniquely determined by the properties
2 and 3 of Theorem 22.11.

Theorem 22.12. If
[P, 22, P,
is open and continuous and induces i, then
(Vby € P)[f(by) = #(b))),
e, f=#
Proof. There are two complete monomorphisms:
J: BPO — Bpl
induced by f via Theorem 22.9, and
i: By — B;.
These monomorphisms are related to each other by
[i(60)] = j([bo])

via the isomorphisms B, <> By, B; <> Bp  which are given by b < [b]. Since
finduces j in the sense of Theorem 22.9, we have, using Theorem 22.11.1

(/7" [bo] = j([bo])
= [i(bo)] = (#71)"(bo)-
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Therefore, for all b, € B, and b, € B,
#(by) < by < b,y < i(bo)
< f(b1) < by
which gives #(b;) = f(b;).
Theorem 22.13. Let By, B;, B, be complete Boolean algebras, let
ii: Bg— B,
1.2: Bl —> B2
be complete monomorphisms and let #; be the open continuous mapping
associated with i; (j = 1, 2), i.e.,
Bo o B B
If i = i;oi; and # = #; o #,, then # induces i.
Proof. #: B, — By is open, continuous and onto By.

#l= (o) = He oY
(#—l)ubo = (i2 ° il)(bo) = i(bo)-

Remark. We are mostly interested in the case where B, is a complete
subalgebra of B, and i is the identity on B,. Suppose that there is a big
complete Boolean algebra B such that all the complete Boolean algebras
under consideration are complete subalgebras of B. Thus, if By, B, are com-
plete subalgebras of B and B, < B,, we denote the map B, — B, associated
with i: B, — B, where i is the identity map on By, by #(Bg, B;). Then by the
definition of #

hence

b e B, — #By, B,)(b) = #(Bo, B)(b).
Therefore we can simply write #(B,) for #(B,, B;).
Definition 22.14. Let « be a cardinal or On.

X e < i}y {Pag |« < B < «})

is called an open, continuous and onto (0.c.0.) inverse system of topological
spaces iff

1. X“is a topological space.

2. Dos: X? — X *is an o.c.o. map.
3. P is an identity map.

4. Pes Psy = Pay

For an o.c.o inverse system, we define a topological space X = lim,.. X¢in
the following way.
Let
X={fe][ [ X*| (Vo < B < Opusf(B) = f@)]}-

QEK
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The topology on X is defined by the following open base.
T={G, |« <« A (G, is open in X%)}
where
Ge = {fe X|fle) € Go}.
We define p,: X — X® by p(f) = f(«).
Remark. Then the following result is obvious.

Theorem 22.15. < X, T') is a topological space, p, is an o.c.o. map and

Pap ©° P = Pe-
Definition 22.16. Let « be a cardinal or On.

B | @ < w}, {igg | @ < B < &}

is called a direct system of complete Boolean algebras iff B, (¢ < «) is a
complete Boolean algebra and i,;: B, — B, is a complete isomorphism such
that

1. i, is an identity map.
2. iBY o iaB = iay'

Remark. We assume that B, is a complete subalgebra of By if « < 8 < «.
Under this assumption {_, .. B, becomes a Boolean algebra B’ if we define
b, + by, by by, b by by + by, b,-b,, ~b in B, where « is the least ordinal «
such that, b,, b, € B, or b e B, respectively. These definitions-are unam-
biguous since B, < B, for « < 3. B 2 lim,., B, is defined to be the com-
pletion of B'.

Theorem 22.17. B, is a complete subalgebra of B.

Proof. Let S < B, and by =[S in B,, i.e. by = [ % {s|se S} Let
b € B and suppose that (Vx € S)[x > b]. We would like to show that by > b.
Since b€ B we have b € B, for some B. Then either 6 € B,, and hence
b < by, or B > « Butif 8 > « then B, is a complete subalgebra of B, and

hence by =% S =T% S > b.
Theorem 22.18. Let « be a cardinal or On. Let

{X* e <o} {pap | @ < B < «})

be an o.c.o. inverse system and X be lim,_,, X“ Let B, be the Boolean algebra
of regular open sets in X¢, let i,;: B, — B, be the complete isomorphism
induced by p,; (Theorem 22.9) and let B = lim,_, B,. Then B is isomorphic
to the Boolean algebra of regular open sets By of X.

Proof, By Theorem 22.7, it is sufficient to show that By is a completion
of Uy <« B For this purpose we have to show (i) each B, is a complete sub-
algebra of By and (ii) U, ., B, — {0} is dense in By — {0}. Since the pro-
jection p,: X — X ®is an o.c.0. map, by Theorem 22.9, p, induces a complete
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monomorphism i,: B, — By, where i (b) = (p,~*)*“b for b € B,. This proves
(i). To prove (ii), it suffices to show that

(3)(3G)[(G, is a nonempty regular open set in X%) A G, < G].

(Since i(G,) = G,, G, is a nonzero element of B, which is below G and which
belongs to Uy < Be.) Since G is nonempty and open in X, there exists an «
and a nonempty open set O, in X* such that 0, € G. Define G, = 0,7° in
X G, is nonempty and regular open in X% It is easily seen that

G.c G °=G.
Theorem 22.19. Let « be a cardinal or On. Let X; (i < «) be topological
spaces and define X* = [ [, X;fora < «and X =[], .. X, with A-product
topologies. We define p,; (¢ < B < «) to be a projection from X# onto X“.

Then ({X®| & < «}, {pas | @ < B < «}) is an o.c.o0. inverse system.
Moreover, if ¢f(x) > A, then X is homeomorphic to lim,_,, X*

Proof. (We prove only the second part leaving the proof of the first
part to the reader.) Let ®: X — X’ = lim,., X* be defined as follows:
O(f)(a) = fT « Then @ is one-to-one, onto and continuous. To show that
® is an open map, let G = [ [, O, be an open set of X, where O, = X,
except for < A number of »'s. Since ¢f(x) = A, sup{v | O, # X,} < «. Let

it be B and let
G, = | [ @~0..

v<a

Then G, is a basic open set in X’ and G, < ¥(G). So ® is open. Therefore
Xz X.

Theorem 22.20. Let « be a cardinal or On. Let

X e < s}y {pug | @« = B < x})

be an o.c.o0. inverse system and X = lim,., X* Let Y be a topological space
and g,: Y — X* (« < «) satisfy the following conditions

l. g, is an o.c.0. map.

2. Pap©Gs = Gor
y 9
N TPQB a < fB (commutative).
X/S

Then there exists a dense subset X, of X and an o.c.o. map g: Y — X, such
that g, = p, 4.

y P Yo
X T.Da (projection)  (commutative).
Xo
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If, in additicn, Y satisfies the following condition

(Vy1, y2 € Y)y1 # yo = (B < ©)[guy1) # qu(y2)]]

then ¢ is a homeomorphic map from Y to X,.
Proof. Define ¢q by

(g(¥Ne) = qu(y).
Obviously g(y)e X and g, = p, ° q. Define

Xo={q(y)| ye Y}

I. X, is dense in X.
Let xe X and let G be an open set with x € G. Then there exist « < xand G,
such that G, is open in X¢ and

xeG, < G.

Take ye(q, )G, and define x, = g(»). Then x,€ X, and x, € G, i.e.,
G N X, #0.

2. q: Y— X, is o.c.o.

Obvious.
3. If Y satisfies the additional condition, then ¢ is one-to-one.
An o.c.o. map is homeomorphic if it is one-to-one.

Remark. We cannot improve Theorem 22.20 by adding X, = X as is
easily seen from the following counterexample.

Let « = w and X™ = 2™ with the discrete topology. If p,.(f) = fI n,
then X = lim,_, X™ is homeomorphic to 2¢ with the product topology. Now
define Y ={fe X|(3n < o)(¥Ym)[n < m < w—f(m) =0J}andg, = p, ™ Y.
The desired ¢ is uniquely determined by (¢(y)){«) = p.(y) for y € Y. Then
Xo =q"Y # X.

Definition 22.21. Let X and Y be topological spaces. A map i: X — Y
is a topological embedding if i: X — i*“X is a homeomorphism.

Definition 22.22. A topological space X is called aromic if for every
x € X there exists a smallest open set G, such that x € Gy i.e., (VG)[x € G and
G open — G, € G). This open set G, is denoted by [x].

Remark. IfP = (P, <) is a partial order structure, then the topological
space of P is atomic and satisfies the Ty-axiom of separation. On the other
hand, if X is a Ty-space and atomic, then we define x < y by [x] < [y]. This
then becomes a partial order structure. Therefore we may think of the two
notions partial order structure and atomic T¢-space as the same.

Theorem 22.23. lLet P, = (P,, <,> and P, = {(P,, <,> be partial
order structures and

. 1-1
Z:Pl ————)PQ.
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Then *“i is a topological embedding” is equivalent to
“(Vp,qeP)lp <1q<-i(p) <2i(q)]7
Proof. Since P, and P, are atomic T,-spaces, this is clear.

Theorem 22.24. Let P, = {(P;, <,> and P, = (P, <,> be partial
order structures and p: P, — P, be o.c.o. Then

I. forevery x, ye P,

x <,y p(x) <op(p).
2. p“Ixle, = [p(x)]e,
Proof.

I. Suppose x <, y. Then xe[yle, < (p~H)“[p(»)]p, (since p is con-
tinuous and [y],, is the smallest neighborhood of v). Therefore

p(x) € [p(1)]e,:
2. p“Ix]e, 2 [p(0)]p, since p is an open map. Therefore p“[x]p, =
[p(X)]e,-

Definition 22.25. Let « be a cardinal or On. A system {({P, |« < «},
{pas | @ < B < «}> is called a normal limiting system of partial order struc-
tures iff

1. P, is a partial order structure for every « < « and {{P, |« < «},
{Pas | « < B < «}> is an o.c.0. inverse system.

2. PpbcP,c.-- =P, S (a < k).

3. If xe P,and « < B, then

Pas(X) = x.
4. (P~ “[xlp, = [xlp, if xePyand « < B < «.
Remark. 4 is equivalent to the following:
4* ForxeP,, yePs a < B < k,
Pap(y) £ X<y < x.

Example. LetBy,c B, = --- < B, < - (¢ < «) be a direct system of
complete Boolean algebras. Let P, be the associated partial order structure
for B, and let p,; be #.; (see Theorem 22.11). It is easily seen that this is a
normal limiting system.

Theorem 22.26. LetxbeacardinalorOn.LetP,c P, < ---c P, <
(¢ < «) be a normal limiting system. If x, y € P, are compatible in P, for
« < 8 < «, then x and y are compatible in P,,.

Proof. Suppose (FzePylz < x Az <yl Then py,lz) < x and
paﬂ(z) = Y-
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Theorem 22.27. Let«beacardinalor On.LetPy,c P, c--.c P, <. --
(e < ) be a normal limiting system.
4. If xeP, ye Py, « < B < «, then

Comp (x, peg(»)) <> Comp (x, ¥)

Proof. Tt is easily seen that the latter implies the former. Now assume
x and p,4(y) are compatible.

(Fze Pz < x N z€[pas(M)p, = Pesl¥le,] by 4.

Therefore

(FuePp)lu <y A z = peg(u)].
Do) < x —u < x. (Use 4*.)

So, x and y are compatible.

Remark. A weakly normal limiting system is obtained from a normal
limiting system by replacing 4 by 4'. Actually, what we mainly use is a
weakly normal limiting system. However, in many cases, the two definitions
are equivalent as is seen in the following.

Theorem 22.28. lLet«beacardinalorOn.LetPoc P, c--- <P, < ---

(« < «) be a weakly normal limiting system. If { ), ... P, satisfies

5. (Vp, g€ Uu<r PIlg £ p— 3r € Ue<x PIIr < g A =Comp (r, p)]]
then the system is a normal limiting system.

Proof. We have to show that 4* follows from 4’ and 5. For that, let
xeP, ye Py and ¢ < B < «. Suppose p.(v) < x and y £ x. Then by 5
there exists a y > 8 and a ze P, such that z < y and - and x are incom-
patible. By 4’ x and p,,(z) are incompatible. On the other hand, by Theorem
22.24, pes(z) < pos(y). Therefore p,(») £ x, a contradiction. Hence

Pap(¥) £ x—y < x.
Conversely if y < x then, again by Theorem 22.24 p,4,(») < po(x) = x. This

proves 4%,

Theorem 22.29. Let « > o be a regular cardinal or On and

<{Pa|“<K},{Paa|“$ﬁ<‘<}>

be a normal limiting system. If P, = (., P; forevery « < « with ¢f(e) = w,
and if P, < « for every « < «, then |, . P, satisfies the «-chain condition.

Proof. For a member x € | J, ., P, define |x| to be the least ordinal «
such that x € P,. Then we have

xel ) Pe—cf(|x]) # w.
Let 4 be a maximal pairwise incompatible subset of | J, <, P.. It suffices to
show that 4 < «.
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We define the sequence of ordinals §, < --- < & < --- < « (i < w) by
induction on i. Define £, = 0. Suppose that & < « has been defined. Take an
arbitrary element x of P., — A. By the maximality of A4, there is an element
e, of 4 such that e, and x are compatible. Define

év1 = max (& + 1, sup{|a.| | xe Py — A)).
Since Py, < « and « is regular, £,,; < «.
Now let 7 = sup {¢; | i < w}. Then 7 < « and ¢f(n) = ». We claim that

A < P,, which implies 4 < «. Suppose not. Let ae€ 4 and a¢ P, Let
a e P, where < B. There exists an n such that p,,(a) € P;. Then

(3be A4 N Py, ,,)[Comp (b, pyy(@)]
(Take b = e, ,...) Now we have two properties.

1. a and b are incompatible.
2. p.g(a) and b are compatible.

This is a contradiction since by 4%, p,s(a) < a.

Theorem 22.30. Under the same conditions as in the preceding theorem,
let B, be the complete Boolean algebra of regular open sets in P,, let B =
Uw<x Be and let B to be the completion of B. Morcover, let B, and B, be
the complete Boolean algebras of regular open sets in | P, and in lim, ., P,,
respectively. Then

i) B satisfies the «-chain condition,
ii) B = B,

iii) The three complete Boolean algebras B, B,, and B, are isomorphic.
Proof. 1). Follows from ii), iii), and Theorem 22.29.

iii). Since, by Theorem 22.18 B ~ B,, it suffices to show that B, ~ B..
Clearly there exists a projection ¢;: U <. Po — P, such that

1. g, is an o.c.0. map.
2. Pagqs = qa (@ < B < 1),
(Let a, = po(x € P,) for x € |, <. P, and take g, as follows:

4s(X) = Ppa(X) If B < oy,
= x otherwise.)

Define f.(B) = gp(x) for x € Us<« Po- Then by (2) above, pey o /(B) = f()
and hence f.e€lim,.,P, Moreover, if x# v then f,# f,. Therefore
Ue<x Pg is densely embedded in lim,., P,. So by Theorem 22.5, B, ~ B..

i). It suffices to show that B = B. Suppose heB, h# 0. Let S =
{beB|0 < b < b}. Take A4 to be a maximal incompatible subset of S. Then
we have

3. b = sup A. (For, suppose b > sup A4, and consider 5 — sup A. Then
we have a contradiction.)

4. A < «. (This follows from B ~ B, and Theorem 22.29.)

Therefore we have (3o < «)[4 = B,]. Since B, is complete, b € B, < B.
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Corollary 22.31. Let « > w be a regular cardinaland B, € B, < --- <
B, = --- (a < «) be a direct system of complete Boolean algebras such that
B, is a completion of (., B, for every limit ordinal ¢ < «. Define B =
Wk <x Be and B to be the completion of B. If (Va < «)[B, < «], then

1. B satisfies the «-chain condition and
2. B=RB.

Proof. Define C, (¢ < «) and C as follows.

) Co={beBy| b > 0}

i) Covr = {b € Baya | #a(b) € Ca}'
1) C, = Jg<o C4 for every limit ordinal «.
) C = C,.

Define P, = {C,, <> and apply the theorem.
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23. Boolean Algebras That Are Not Sets

When for a given axiom (Va)A(x), one wishes to build a model of
ZF + (Va)A(«), he is often lead to the existence of complete Boolean algebras
B;, for which

1. V% satisfies ZF + (Ve < B)A(c), and
2. The cardinality of |B,| increases as f increases.

In this situation, the natural idea is to find a certain limit B of B, and to
prove that V® is a model of ZF + (Va)A(<).

In almost all cases, however, the limit algebra B is not a set, it is a proper
class. In general if a complete Boolean algebra is not a set, then V* may not
satisfy the Axiom Schema of Replacement or the Axiom of Powers. Therefore
we need a general theory about conditions we should impose upon B in order
that V* satisfy the Axiom Schema of Replacement and the Axiom of Powers.

Another interesting problem is this: We do not have many useful ways to
define limits of Boolean algebras. Therefore we tend to think in terms of
limits of topological spaces or limits of partial order structures. At least one
can make a partial order structure P, which is dual to B,. Then we can
take P, a limit of P4, and define a limit of B, as the dual Boolean algebra of P.
In our opinion, one of the most interesting problems in set theory is to
investigate what effects the special kinds of limits of partial order structures
or topological spaces have on the limit Boolean.algebra B and the Boolean
valued universe V®. In this section we will see that a limit topological space
which is simultaneously a direct limit and an inverse limit of a certain se-
quence of topological spaces plays an important role. We believe strongly in
the importance of the investigation of many other kinds of limits of Boolean
algebras.

Until now we have considered only Boolean algebras which are sets. This
requirement enabled us to prove the Axiom of Powers and the Maximum
Principle in V™. We shall now drop this restriction and allow B to be a class.
However, in many applications B 1s not even a class of sets but a class of
classes. Consider e.g., a partial order structure P = (P, <) where P is
a proper class. Then the complete Boolean algebra of regular open classes in
P contains classes some of which are proper classes. In order to cope with
this situation we shall consider two cases. In the following we shall use B
for a Boolean algebra which is a class of sets and B for a Boolean algebra
which is a class of classes. In the second case we obviously need a set theory
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which is stronger than ZF. Note also that for B as above the completion of
B is of type B.
If we consider B as above we do not require that B be complete but
satisfy the following weaker condition:
(VA4 < B)[.#(A) — (Ix € B)[x = sup A]].

On the other hand we always require that a Boolean algebra of type B be
complete, i.e., sup A exists in B for every class A < B. Under these assump-
tions we define V® and V® in two different ways. V' ® is defined as follows:

Definition 23.1. Let C, = B N R(e) for « € On. Then

. V,® = 0.

2. V,® £ (ue C,2™ | (3¢ < )[2W) < V..

Lv® = e,

ae0n

Remark. This is a definition in the framework of ZF. Moreover,
V® =yl QW) = V® A u: P(u) — B}

as in the case of a set B. Note that V,® is a set for each « and V'™ is a class
of sets.
V® is defined as follows:

Definition 23.2.

1. Vy® 2 0.

2. V@ £ (yeB2™ | (3¢ < o)[2) = VP A D(u) € On]).
3.y 2| ] y,m.

Remark. Note that in general V,® is not a set for « > 1. We tacitly
assume that we have a sufficiently strong set theory to define V®. In the
following, u, v, w,... range over V® or V'®, [u = v], [uev], and y for
y €V are defined in V™ and V'® in the same way as in the case of a set B.
The following results are obtained in the same way as in the case of Boolean
algebras which are sets.

Theorem 23.3. (cf. Theorem 14.2). Letke Vand ue V.. Then

l. « < rank (k) = [k eu] = 0.
2. « < rank (k) > Tk = ul = 0.

Theorem 23.4. (Yue V®)[[Ord (W)] = Sseon [u = &]].

Remark. This is proved in the same way as Theorem 13.21. However,
since B need not be a set, we have to give a proof that forue V®

Dy ={¢[[u=¢€]>0
is a set. But this follows directly from the preceding theorem.
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We can define

L [M@] 2 Y [u= ]
kev
in V® and V® as before. In the case of V® the existence of the supremum
is assured by our assumption that B is complete. On the other hand, in the
case of V® we have from Theorem 23.3 that for ue V'®

() [Z =M= 3 = léﬂ]
kev keR(a)

and therefore the sum in 1 is actually only a sum over the index set R(e)

Similar remarks apply to the definitions of B, +, ¥, F below in the case of

V.

2. [ueBl= > [u=1b.

beB

3w o,wl = D [u=5][v=>5]Iw= (b + b)].

b1,boeB

4o, wl = > [u=5b1Iv=>5blIw=(b b))

b1,b2eB

5.[ueFl= > [u=b]b

beB
Finally, we let
V® Ly = S M B LR,
v A @ =

If we consider only V®, B always denotes the completion of B. [¢] is defined
as before in both cases. For V™, it is always the case that [¢] € B, but we may
have [¢] ¢ B if ¢ contains a quantifier; hence if [¢] is defined by a sum or
product over a class. The definitions of B and [¢] are beyond ZF set theory.
Nevertheless, we can manage to build a theory in ZF by using the notion of
forcing, i.e., we use the relation & < [p] (where b € B) instead of [¢]. This
definition can be given in ZF by recursion:

Lb<[pr Ao b <[] A b <[]

2. b <[—¢l <= (Vb eB)b < [p] = b < ~b]

(since b < [—g] <> [@] < ~b).
3.5 = [(VX)e(x)] < (Yue V®)[b < [pw)]].

For an atomic ¢ the meaning of b < [¢] is obvious from 1 to 5 above. Thus,
given a formula ¢, b < [¢] is a formula of ZF.

Theorem 23.5. V® and V® satisfy the Axioms of Extensionality,
Pairing, and Infinity.
Proof. The proof is the same as in the case of a set B.

Remark. Similarly, our former proof (using ¥,® or V,® in place of M,)
establishes the following results.
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Theorem 23.6. V® and V® satisfy the Axiom of Regularity.
Theorem 23.7. (cf. Theorem 13.13.)

[(Axewe®)] = > (@x)p)D,

xeZ(u)

(Vxewe()] = [ @) = [¢()]).

xeZw
Theorem 23.8. V® and V® satisfy the Axiom of Union.
Proof. We have to show that for a given ue V® or ue V'®
A xev < @yeu)xeylll = 1.
Define v by
70) = \J 20)

veD(u)
and

(Vx € Z2()[v(x) = [@y € w)x € y]I].

Obviously, ve V® or v € V™ (use Theorem 23.7) according as we V® or
ue V®, Since [(Vx € v)(3y e u)[x € y]] = 1 by Theorem 23.7, it remains to
show that

[(vy ew)(Vx € p)lx e o]l = 1,
(Myewxepxel= [ [ @) yx) = Ixe.

yeZu) xe@(y)

Let y € Z(u) and x € Z(y). Then

u(y)-y(x) < [xeyl-lyeul < [(3yo e wlx e yoll = v(x)
< [xe].

Theorem 23.9. V® satisfies the Axiom of Subsets (Zermelo’s Axiom
Schema of Separation).

Proof. Letae V'®, We wish to prove that
[Go)¥p)lyev—yea n oyl = 1.
Define v € V® by 2(v) = Z(a) and
(Vx € 2))[v(x) = a(x)- [p(x)]].

Then
[uev] = Z v(x)-[u = x]
xe%(v)
= 3 a@) e =
xeD(a)
= z a(x)-[u = x]-[e)]
xeD(a)

luea A eu)].
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Remark. Note that the foregoing proof requires a Boolean algebra of
type B and cannot be carried out for an algebra of type B. The difficulty is
in defining v: If @ € V® then for each x € Z(v) we have a(x) € B, but we do
not know that Tp(x)[ € B. While V® must satisty the Axiom of Subsets it
need not satisfy the Axiom of Replacement, and even if this axiom is satisfied,
the Axiom of Powers need not hold in V®. Therefore we have to look for
suitable restrictions on B. An important though rather weak condition is
given by the following.

Definition 23.10. B satisfies the uniform convergence law (UCL) iff the
following condition is satisfied:
Let I be a set and for each j e ], let {b,; | « € On} < B If

L. (Ve)(VB)[e < B — bai = by

and

2. [ [bu=0

xeln

then

[12>ba=0.

aeOn el

Remark. This means roughly that if a nonincreasing sequence b,,(« € On)
of elements of B converges to 0 for each i € /, then these sequences converge
uniformly to 0.

Exercise. If we omit condition | from the UCL, is the corresponding law
(for fixed I) equivalent to the (On, I)-DL (cf. Theorem 18.5)?

Theorem 23.11.  Suppose {by; | € On A i < 2} < B,
1. (sz)(Vﬂ)[a < B"ébﬁo < bao A bBl < bal]

and
2. [] bao=1]] bar =0,
aeon aeon
then

H (bao + bay) = 0.

axeon

Proof. (By contradiction.) Suppose b = [, (beo + ber) > 0. Since
[T buo = 0, beo 2 b for some «. Let p =b — by Then 0 < p < b and
p-byo = 0. Similarly, since [[, b, =0, by, # p for some B = «. With
g=p — by, we have 0 < ¢ < p and g-by; = 0. This gives 0 < g < b and
g-(bso + b)) = 0, a contradiction.

Theorem 23.12. Let B be the completion of B. For b € B define

by =sup{b’ | b’ e BN R(e) A b" < b}.
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Then

1. b, < b.
2. a<pf—b, <byand b, = [[{b;| B = al.

3. by =b.

aeln

Proof. 1 and 2 are obvious.
3. Suppose 3, b, < b. Since B is the completion of B,

(Ape B){O <p<b- Z ba] (by the density property).

axeOn
Therefore ()[p € BN R(«)] and hence p < b,. This is a contradiction.

Remark. Theorem 23.12 says that every element of B can be obtained
as the limit of elements of B (see Theorem 23.14 below) when we define
limits in the following way.

Definition 23.13. 1f be B and {6, | « € On} < B then
limb, =1 iff > [[b,=1,

ae0n xeOn a<f
lim b, = b iff lim (b, < b) = 1.
axeOn aeon

Similarly, for u, u, € V® or V@®

limu, =u iff lim u, =u] = 1.

xeOn aeOn
We will occasionally write u, — u for limyeo, Uy = u.

Remark. Definition 23.13 is reminiscent of the definition of the limit of
a sequence of point sets in analysis. Using this definition, we can restate
Theorem 23.12 as follows:

Theorem 23.14. If B is the completion of B and if b € B, then there is a
sequence {b, | « € On} < B such that b, — b.

Theorem 23.15. Suppose liM,eo, b, = b and limgeon by = b'. Then
1. lim (7&,) = ~b.

axeOn

2. lim (b, + b)) =b + b'.
axe0n

3. lim (b,-b,) = b-b'.

aeOn
Proof. 1. Obvious since (b, <> b) = (b, <> ~b).
2. (be + b)) = (b + D)

“(be + 0)-(C(b + b)) + (ba + be)(b + )
((Tba)(7D) + by BY(7h2)-(TH') + (be- D))
(ba <= b)- (b < b).
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Since

S1ltee=by=> [Tr=b) =1,

aeOn asf aeln «<sf

the dual form of Theorem 23.11 gives

2. (H (by = b)-] | (6 @b’)) -1

aeln \ a¢<p asp

S (LT s = b)Y ow) _ 1

«eln (as I

and hence

> [Ty + b))y = (b +8) = 1.

aeln asp
3. A consequence of 1 and 2.
Lemma. If B is the completion of B, then V™ < V@,

Proof. For a given ue V™ we can prove by induction on the least «
such that we V,™ that u e V,™® — e V',

Theorem 23.16. Let B be the completion of B. If B satisfies the UCL,
then (Vv e V®)IH{u, | a € On} < V) limeon uy, = 0], Le., every ve V®
can be obtained as the limit of elements of V™.

Proof. (By induction on the least « such that ¢ € V,‘®.) As our induction
hypothesis, assume

(Vx € D)3 yax | « € Onp € V®)|yox — xI.
By Theorem 23.14,
(Yx € 2(0))@{bux | @€ On} S B)lbyr — 1(x)].
Now define u,: {y.. | x € Z(v)} — B by
Ul Vax) = bax for xe2(v).
Then (Vo)[u, € V™). Moreover,

e =01 = [] @e(yer) = [yexevD): [ ] (0x) > [xeud)

Vax€Z(uy) xeZ(v)
> [ ] Gaw = 00)-Ix = yau) [ [ @) = e [x = yeal)
xeZ (v) xeZ )
since (Yx € Z(w))[w(x)-[x = w] < [w; e w]]
> [T (bux < 0(0)-Ix = yeud — 1-1,
xeZ(v)

using the dual form of the UCL for the first factor.
Corollary 23.17. If Bis the completion of B and B satisfies the UCL, then
(VpeB)p >0 NeV®Eue V®)p-[u= 1] > 0]).
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Proof. For given v and p > 0 let
bo=T1T1 [T (bsx<v(x)).
Bza xeZ()

Since 3, b, = 1, there exists an « such that b,-p > 0. Then u, has the desired
property.

Theorem 23.18. Suppose that B is the completion of B and B satisfies the
UCL. Then V® is a B-valued elementary substructure of V®, i.e., for each
formula @ of the language of V® and every uy, ..., u, € V®,

ﬂ.‘p(“h e Uy HV(B) = [ (Lll, Lo, Uy ]]V(ﬁ).
¢

Proof. (By induction on the number of logical symbols in ¢.) We con-
sider only the case of a quantifier.

Let o(uy,...,u,) = (VX)0(x, uy, ..., u,) where uy,...,u, € V®. Let
b = [p(uy, ..., u,)]V™ and let v be any member of V®. Claim:

b < [, uy, . .., u)]V™®.
Suppose not: Then
I, uy,y . .., u)¥® =0 for some p, 0 < p < b.
By Collorary 23.17, there exists a w € V™ such that p-[u = v] > 0. Then

0 = p [0, uy, .., I = polu = o] [l vy, .y )]V
= p-[u = v]-Ipu, uy, . .., u)IV™, by the induction hypothesis
>plu=uv]-b=p-lu=yv] >0, a contradiction.

Therefore we have

b < H (o, u, -y u)lY® = (o, . . ., w)V®.

veV(B)
Since
b = H II{/J(Us Uyy o ooy un)]]vu;) = 1_[ [[’7[’(1—73 dys ooy un)HV(“)
veV(B) vev(B)
> [o(uy, . . ., u )Y,
we obtain

b= [p(uy, ..., u)]"™.

Definition 23.19. A partial order structure P = (P, <) (where P may
be a proper class) satisfies the set-chain condition (s.c.c.) iff every class of
mutually incompatible elements of P is a set. B satisfies the s.c.c. iff P =
(B — {0}, <) satisfies the s.c.c.

Remark. Thus the s.c.c. for Boolean algebras is a generalization of the
R -chain condition.

Theorem 23.20. Suppose P = (P, <) satisfies the s.c.c. Let B be the
Boolean algebra of regular open classes in P. Then B satisfies the s.c.c.
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Remark. Under the assumption of Theorem 23.20, every regular open
class in P can be represented by > {4*“x | x € a} where a is a set and each 4" x
is a basic open class. These are of the form [p] for some p € P and hence they
are determined by sets p € P. Therefore, if B is the Boolean algebra of regular
open classes in P, each element of B can be represented by a set. Thus we may
assume that B is a class of sets and hence is of type B as discussed in the
beginning of this section.

Theorem 23.21. If B satisfies the s.c.c. then B satisfies the UCL.

Proof. Suppose that there is a family of sequences (b, | « € On) for
each i € I, where I is a set, such that

{byi|c€On N iel} < B,
(Vie DVe)(VB)[x < B—bui = byil,
and
(Viel)[ [T bw= 0]-

Then, for each i€ l, {~b, | « € On> is nondecreasing and converges to 1.
By the s.c.c., these sequences must eventually become constant, ie.,

(Vie @RI by, = 1],
(Vie )(Va = B)[ba = 0].
Let 3 = supy, B; (note that 7 is a set). Then
(Vo > B)[Z by = o],

hence

[12ba=0.

aeOn iel

In particular, B satisfies the UCL if B satisfies the X,-chain condition for
some o.

Remark. 1f B is the completion of B and B satisfies the UCL, then
V® and V® satisfy the same axioms of ZF by Theorem 23.18. In Theorem
23.9 we proved the Axiom of Subsets for V®®. Next we prove the Axiom of
Replacement for V® assuming the UCL for B.

Theorem 23.22. Let B be the completion of B. If B satisfies the UCL,
then V® satisfies the Axiom of Replacement.

Proof. As in the proof of Theorem 9.25 we have to show that
@ (V@) (x, 2] =1

implies
(ii) (Ya e V®)[[(@v)(Vx € a)(Ty € v)¢'(x, y)] = 1].
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Therefore assume (i) and let a € V™. Suppose that (ii) does not hold for a.
Then for some b € B,
0 < b Ab[EA)YVxea)3Tyev)'(x p)] = 0.
Then
(xeg@)|- > Wi -o|

yeV (1)

by (i) and Theorem 23.15, hence

> (‘ >, {[qo'(x,y)ﬂ) =0 by the UCL.

xeZ(a) ©  yeVa(h)

Therefore for some « € On,

> (> 1905, 1) % b,

xeD(a) yeV (B

or by passing to complements,

i) [ 2 [0 £ b

xePa) yeVB)

Letve V® be v: V, ™ — {1}, i.e., v is the constant function 1 on ¥,"™. Then
by assumption

0 = b-[(Vxea)3y ev)p'(x, y)]

=b[] (a(x) = > [I«p’(x,y)ﬂ)

xeP(a) yeVo(B)
26- [ 2 [¢G»l>0  by(ii).
xeP(a) yeVq (B)
This is a contradiction.
Exercise. Prove the converse of Theorem 23.22 in the following form:

If V® satisfies the Axiom of Replacement, then B satisfies the UCL. Hint:
(K. Gloede) Let I be a set and let {b,; | i € I, « € On} < B be such that

L. (Vie N(Ve)(VB)e < B—> bai < byil.

2. (VieI)[z ba = 1]-

aeOn

To show that 3, [ Lic; b = 1, we define u by
Ixeul = > [ [Ix = <& & -bu,

aeOn iel

show that [(Vx)@)[xel—yeOn A {x,y>eul]l =1, then invoke the
Axiom of Replacement in V® together with the Axiom of Subsets and
Unions in V® to conclude that [(Je)(Vie I)@p < «)[<i, p) € u]] = 1.

Remark. We recall that from §16 we have assumed that V satisfies the
Axiom of Choice. Thus,
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Theorem 23.23. [AC] = 1in V®,

Proof. In most cases B satisfies the additional requirement that V® ig
a model of ZF. In this case we can prove the AC in V® by a forcing argument
just as in Theorem 14.25 with suitable modifications as in the proof of
Theorem 23.24. below. However, since we shall give an example of a Boolean
algebra B such that V® does not satisfy the Axiom of Powers, we indicate a
direct proof of Theorem 23.23 in the general case. We take the Axiom of
Choice in the following form:

V) @)(Vxew)(Fvex)@!' x' eu)[yex']—= @l yex)|[yev]].

Let ¢(x,y) be yex A @' X' eu)[yex’], ue V®, Since U eow Z(x) is a
set, let {y, | £ < o} be an enumeration of this set (using the AC in V). Then
define v e V® by

20) = \J 2() = {r:| € <},

xeZ(w)
(v,veg(v>>[u(y) = S S My = e $0eyl [T I-dCe 7D |
xeY(u) e<a n<é&

Note that v(y) € B, since we have only sup’s and inf’s over sets. Now one
can show that

y, y e 2Dl -[yexl-v(y)-[y exl-[xeu] <[y =yl

which proves the uniqueness part and

[Gy)é(x, )] < [3y e x)[yev]]

which proves the existence part of the conclusion.
Remark. Sometimes we need a stronger form of the Axiom of Choice:
ACH (Vx)[x # 0 — H(x) € x]

where H is definable in ZF using possibly some new constants which are
added to the language of ZF (e.g., H itself may be a new function constant).
Thus ACH means that there is a definable well-ordering of the universe. If
we assume ACH, V™ is understood to be the extended structure

v

V(B) = <V(B)s ;, 59 /Wy B, :{_9 ‘:’ H’ F>
where

ueH] = > [u=kl
keH
Theorem 23.24. Suppose that V™ is a model of ZF and assume ACH.
Then ACH is B-valid in V®,

Proof. (The proof shows how to apply forcing arguments in the case
where B is a class.) Let M be a countable transitive structure such that
(M, B, H¥> is an elementary substructure of <V, B, H), with respect to
the language £* of V®, Let h,: BY — 2 be a homomorphism which preserves
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all the sums which are definable in M. (The set of these sums is countable.
Note that BM is only a class in M, so /4, need not be M-complete, but 4,
preserves all the sums 6 in the proof of Theorem 14.22.) Finally, let F =
{be BM| hy(b) = 1} be the ultrafilter corresponding to 4. As in Theorem
14.22 there is a mapping

h: (V@M 20 p[F]
such that

MIF]Fglh(uy), . . ., h(u,)) < ho(lp(us, . . ., un)]) = 1

for uy, ..., u, € (VEW, ¢ a formula of #*. We have to show that M[F] F
ACH. Using the language £* we can define in M (a Gddelization of) the
ramified language obtained from #* and M (i.e., with ordinals ranging over
the ordinals in M), and we can express the syntactical notion of “U is a
constant term” in M as well as [u € v] and [u = v]. Let D be the denotation
operator related to M[F]. D(u) can be expressed as follows

D(u) = {D(v) | p(v) < p(u) A [veu] e F}.

Using H™, we have an M-definable well-ordering of M and hence an
M-definable well-ordering < of the constant terms. For x;, x, € M[F], let
C(x,) be the first y (w.r.t. <) such that x; = D(y); then

X, <*xy S Clxy) < Clxy).

Then <* is a well-ordering of M[F] which is definable in M[F] using the
language #*. Therefore ACH holds in M[F].

Remark. Next we construct two counterexamples to show that V®
need not satisfy the Axiom of Replacement, and even if it does, it need not
satisfy the Axiom of Powers.

Theorem 23.25. There is a Boolean algebra B such that V® does not
satisfy the Axiom of Replacement.

Proof. Define a partial order structure P = (P, <) as follows:
PE{p|p<wn (W ep@Eicw)FaecOnp = )]
A (Vie o)Ve)(VB)[i, ep ep A i, By €p — o = B},

i.e., elements of P are functions from a into On for some a € w, With @ < w.

P1 sz(é)pl 2 p, for py,p.€eP.

If we replace On in P by some «,, then the resulting P, is a set. If B, is the
Boolean algebra of regular open sets in P, , then «, becomes countable in
V®«0)  Similarly, we shall now obtain a function from w onto On contra-
dicting the Axiom of Replacement. Let B be the complete Boolean algebra
of all regular open classes in P and let B be the Boolean algebra of all regular
open classes which are of the form

z {Ad“x | xea}
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where a is a set and for each x in a, A““x is a basic open class. Then B is the
completion of B and, referring to the remark preceding Theorem 23.21, B
can be regarded as a class of sets. We define P, <, G by

uePl2 > [u=p]

peP

[2@ o] = 2 [u=pllu=pl

p1.p2€P
P1SP2

ueGl 2 2 [u=pl-[p]=°

peP
Now consider
A —_ = L
V® = (KVY® = e M, P, £,G).

First we prove that
1. [(Vie w)3a)FpeP)Ki,e>ep A peCG]] = 1.
By Theorem 23.4,

[(View)3u)3pe PG, apep A peGll=[] > > [peGl

i< aeOn peP
G, uyep

But for each i€ w

>S5 [eGlz D e} = 1.

«eOn peP xeOn
{d,)€ep

This proves 1.
We next prove that

2. [(Vi € w)(V)(VR)[(Bp € P)[Ki, «p € pApE G)
A Q@geP)Ki,BpegngelGl—a=p]]=1

Let iewand b, = [(Ipe P)i, & e p A pe G)]. We have to shcw that
be-by <1& = B]. Therefore we can assume « # 8. Then

be= > 1p]7° = [{<, >},

pEP
(,adep

hence
be-by = [{<i, ep}]~°-[{<i, BO}]7° = 0.
Finally, we will prove that
3. [(Ve)(3i < w)3Fp e P)[,apep A peG]] = 1.
[(3i < @)EpeP)i, & ep A peGll

=> 2 plI°=2 [} =

i<w PEP i<w
(i,a)ep

for each «.
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Now, in order to show that the Axiom of Replacement does not hold in
V® let o(i, @) be (3p € P)[Ki, «» € p A p € G]. Then, by 1-3,

[(Vie w)3! a)p(i, @) A (Vo)(Ti € w)p(i, )] = 1
i.e., @ determines a function from w onto On in V®, but
[Ev)(Vi < w)(3x € v)e(i, x)] = 0,
therefore the Axiom of Replacement does not hold in V®,

Theorem 23.26. There is a Boolean algebra B which satisfies the UCL
(even more, B satisfies the c.c.c.), but V® does not satisfy the Axiom of
Powers.

Proof. To prove Theorem 11.11 we used the partial order structure
P, = {(P,, <) where

Po={p|l@EDdSaxwrnd<wApds2]
p1 S pa<=py 2 py for py,ps€P,,

to add a-many subsets of w to M, so that #(w) > « in M[G] (assuming that
« is a cardinal in M). In terms of Boolean-valued models this means

[P = & =1

in V8= for each cardinal «. (Note that P, satisfies the c.c.c., so cardinals are
absolute.)

Now we take B as the Boolean algebra of all regular open classes of 2°.
Then B satisfies the c.c.c. as can be seen from Theorem 11.10 which can be
proved for B with suitable modifications. Hence B satisfies the UCL and
may be considered as a class of sets. Since On x w ~ On, we obtain, in the
same way as we proved this result for V&,

|

[Pw

'

>d =1

in V® for every cardinal a.
Therefore

and hence [(A)(Vu)[ue v~ u < w]] = 0, i.e., the Axiom of Powers fails in
V®_ (Note that V® satisfies the AC by Theorem 23.23.)

Definition 23.27. <b',{b;| i€ I}) is called an I-sieve iff &' > 0. An ele-
ment b > 0 is sifted by this sieve iff

Let B, be a complete subalgebra and # be #(B,, B). An element 6 > 0
is #-sifted by this sieve iff

b<b A (VieD#b-b)b < b].
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Let I be a set. B satisfies the I-sieve law (I-SL) iff there exists a complete
subalgebra B, of B for which

1. By is a set,
2. for cvery sieve <b', {b; | i € I}) there exists a #-sifted element b.

B satisfies the sieve law (SL) iff B satisfies the I-SL for every set [.

Definition 23.28. Let B,y be a complete subalgebra of B and # be #(B,, B).
Then A(By) = {be B| #b) = 1}.

Exercises.

. beA(By) —b > 0.

b eBo, b eA(By) — #(b'-b) = b
L0 < b By, beA(By) —b'-b > 0.
. b+ (b)) e A(By).

b= #(B)- (b + (TH#())).

v B W -

Definition 23.29. Let [ be a set. B satisfies the [-A sieve law ([-ASL) iff
there exists a complete subalgebra By of B for which

1. By is a set,
2. for every sieve <b', {b; | i€ [}> defined in A(B,) there exists a sifted
element in A(By).

Exercise. [f B satisfied the [-ASL, then B satisfies the [-SL.

Theorem 23.30. Suppose that B satisfies the UCL and B satisfies the SL,
where B is the completion of B. Then V® and V'® satisty the Axiom of
Powers and hence both are Boolean-valued models of ZF + AC.

Proof. Again let M be a countable transitive structure such that
(M, B is an elementary substructure of (¥, B) with respect to the language
L* of V®, let l1,: BY — 2 be a homomorphism which preserves all M-defin-
able sums and let F = {b e B™ | 1o(b) = 1} be the corresponding ultrafilter.
M [F] is defined by ramified type theory, so it need not be a model of ZF;
however, as in Theorem 9.38, M [F] satisfies all the axioms of ZF except
possibly the Axiom of Powers since these axioms are B-valid in V™. So we
have to prove that M [F] satisfies the Axiom of Powers.

Let v be a constant term, i.e., D(t) € M[F] where D is the denotation
operator related to M[F], and let I be the set of all constant terms with
rank <p(u). Since ““f is a constant term ™ is definable in M using the language
£* (cf. the proof of Theorem 23.22), 1 € M. Since the SL holds in <M, BM),
for this particular / there is an M-complete subalgebra B, of B satisfying the
condition 2 in the definition of the I-SL in (M, B*>, and B, € M. For the
remaining part of the proof, let p, r, 7, 7', ... range over B™ — {0}. We will
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reserve p, q,q, q’, etc., to denote elements of P. For S < By, x I and Se M
we define K(S) as follows:

K(S) = D(w) if there exists an 7 and a w such that w 1s a constant term
and

() FeF AT <[wEul
(ii) Wve D[#F-loew] -7 < [vew]].
(i) S=<p, | 0<pApeB, Avel A0 <pF <vew]

K(S) = 0 otherwise.
We claim that

(iv) K: PMW(B, x [) 222 P MEY D(y)).
This proves the theorem. For By, x I M, so #™(B, x I)e M < M[F],
since M satisfies the Axiom of Powers. Moreover, K is definable in M [F] and
M [F] satisfies the Axiom of Replacement, so ¥ D(u)) € M [F] by (iv).
We prove (iv) in the following way.

1. K is a function.

Let S < By x [ and Se M. We have to show that K(S) is uniquely
determined by the above requirements, i.e., assuming that conditions (i)-(iii)
are satisfied by wy, 7y and by w,, F; for the same S, we have to show that
D(wy) = D(w,). By symmetry, it suffices to show that

D(v) € D(wy) — D(v) € D(w,).

Therefore let D(v) € D(wy). We can assume v € 1. Then {v € wg] € F. (See the
proof of Theorem 23.24.) Let r’ = Fy-[v € wo]. Then r’ € F by (i), and

#(r')Fo < [vewo] by (ii).
Thus, by (i),
SH(r'), vy € S.

But also
#r)-F < [vew]

since by our assumption both wy, 7y and wy, 7y satisfy (iii) for the same S.
Therefore, since r' € F A r' < #(r'), #(r')-FL € F, and hence [vew,]eF.
Therefore D(v) € D(w,). (See the proof of Theorem 23.24.)

2. The range of K is Z*F( D(u)).

Let D(w) < D(u) for some constant term w. Then {w < ul € F. For
v e [ define b, = [v € w]. Then by condition 2 of the I-SL,

N)[r < w < u]l—@GR)F < r A Yoe )[#F-b,)-F < b,]]).

Obviously, such #’s are dense beneath [w < u] € F. Therefore

AN[F <wecul A FeF A (YoeD[#F-b,)-F = bl
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Detine
S=Up, 0| 0<pApeBy, Avel A0 < p-F<vew]l
Then K(S) = D(w) and Se»™(B, x I).
Definition 23.31. B is (X,, N,)-splitable if the following condition is

satisfied. Suppose 0 < ¢ < b,q, be B, {b,; | iel A je N;} S B, [ < X, and
(Vie )[2;<x, by = b]. Then

(AGeBYAAS B0 <G <qg A A <R, A (Vg €B)
0<qg <g—ie3pe )3Ty <R)pg >0Apg< Z bij‘ l ‘

J<y
Theorem 23.32. If B satisfies the c.c.c. and ¢f(X;) > X,, then B is
(R,, ¥,)-splitable.
Proof. If B satisfies the c.c.c. and ¢f/(¥;) > N,, then
b= Z b;; = Z b,; forsome y < X,
J<Ng i<y
Therefore we can simply take § = g and A = {b}.

Theorem 23.33. Suppose cf(X,) > X, B is (X, ¥))-splitable and V¥
satisfies the axioms of ZF + AC. Then [¢f/((X,)7) > (X)) = L.

Proof. Let M be a countable transitive structure such that (M, B
is an elementary subsystem of ¢V, B . We will prove that in (V)™

Ief(R)7) > (X)) = 1. Let fe (V™)™ and
b = [f: (M) — (XM
We have to show that
b <3y < ®RMMVE < @M/ < ¥l

Therefore we can assume b > 0. Let /ig: BY =2 be a homomorphism
preserving all sums which are definable in M and such that ho(h) = 1. For
the remaining part we work in (M, B™>. In order to avoid cumbersome
notations, we will write X, X;, B, ... instead of XM, XM BY, ... Also a
means @™. Let / = X, and for ¢§ < X, 7 < ¥,

bey = b-[f(€) = 7.
Then

> by = b-[(@n < X)) = 7]l| = b.

n< Ny

(V¢ < Ry

Since B is (X,, X,)-splitable, for each r < b there exist 7€ Band A = B such
that 0 < 7 < r and

A < R, A (V€ < R)(Vr' € B) _
[0 <r' <r—(3n< NB)(BpeA)‘p-r’ Ap-F < Z bey

n<n
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Since such 7’s are dense beneath b and /i,(b) = 1, we can find an 7 < b such
that /i5(F) = 1 and 7 has the above properties. In particular,

Vr'eB)0 < r <F-—>(3peMp-r > 0]
Choose B' = {r'|r'e B A 0 < r’ < i} such that
e rreBY@peMNpr' >0 Apr">0—=r =r"]
and
vVr'eB)0 <r <F—>@r"eB)Y3peMpr >0npr">0],

i.e., we identify those r'-r”€ B for which 0 <r’ <7 0 <r" <7, and
pr’ > 0 A pr” > 0 for the same p € A. Since A < X, B" < X,. Since

(V¢ < R)(Vr' e B3y < Ry)(Fpe 1\)[p~r' >0ApTF< Z bf,,:}

nen

and ¢f/(X;) > N,, we can obtain a single n > N, such that

(V¢ < R)(Vr' e B)3p e /\)[p-r' >0ApF< Z bg,,,}

n<n
Because of the choice of B, it can again be replaced by {r' | 0 < r’ < 7},

(i) (V6 < R)(Vr' € B)

[0 <r <F—(3pe /\)[p-r’ >0 A pF < z bf,,,H-
n'<n
Define F and
i (VB Lono, MIF]

as in the proof of Theorem 23.24. Suppose h(f)(é) = o' for &€ < X, and
n’ < X,. Then /IO([[f(é) = %']) = 1, and since f1o(F) = 1,

() = 41-7 > 0.
Therefore, by (i),

(@pe Dp- /@) = 7F > 0 A pF <
0 < p-Lf@) = 71-F-[fE) < 7] <

hence o' < 7. Therefore 7 is a bound for /1(f). This proves the theorem.

Corollary 23.34. If V™ satisfies the axioms of ZF + AC and B is
(X, R,)-splitable for all X, ¥, such that ¢f/(¥;) > R, (e.g., if B satisfies the
c.c.c.), then cardinals are absolute, i.e., (Va)[[Card (R = 1]

Proof. One can easily prove that if for all « and 8
of (¥y) > R, —[¢f(Rp)” > (X)) =1

then (Vo)[[Card (X,)7] = 1].
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Definition 23.35. B satisfies the (w,, w;)-WDL iff for every family

e | € < we A < g} < B,

I—I me: Z H Z bey.

E<wg N<wg fewg®x [<wqe n<f()

Remark. This is a natural generalization of the (w, w,)-WDL (see
Definition 20.1).

Theorem 23.36. If B satisfies the (w,, w;)-WDL, then B is (wg, wy)-
splitable.

Proof. Let0 <r < b A (V&€ < wo)[b = 3, <0, byl Then, by the

(wes wj)-WDL,
b=TT S b= 5 [1 3 b

E<we N<wg fewg®e E<wg n<f(&)

Therefore, for some f'€ w;*,

F=r- II Z bey > 0.

I<wa N<f(E)

Let A = {3, <5 bey | € < w}. Then A < X,. Thus it remains to show that

forr' e B

0 < <F->(V¢ < w )3 < wy)dpe /\)‘(p-r’ > 0) A pF < Z bey |-

n”'<n
Therefore let 0 < r" < Fand £ < w,. Then
r’' < Z bens
n<f(§)
and we can simply take

p= Z bfneA

n<f(&)

’ ’

>0 ApF<p= Z by

i

pr

&
n< 3

Corollary 23.37. Suppose ¢f/(X,;) > X, and V™ satisfies the axioms of
ZF + AC. Then the following conditions are equivalent.

(i) B satisfies the (w,. wy)-WDL.
(i) B is (w,, wy)-splitable.
(i) [f((RX)) > R T =1 in Y™,

Proof. We can prove (i) <> (iii) in the same way we proved Theorem 20.3.
By Theorem 23.36, (i) - (ii); and by Theorem 23.32, (ii) — (111).

Definition 23.38. Let P = (P, <, | be a partial order structure with a
largest member 1. An element p € P is said to be coatomic if

l#p AW x=2p—>x=1Vx=p]
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For any p € P, define
CA(p) = {q | g is coatomic A g = pj.
P is said to be coatomic if
(Vp, g€ P)[CA(q) = CA(p) < p < ql.
A coatomic partial order structure P is said to be strongly coatomic if
(Vp e PYVS = CA(p))3g € P)[S = CA(g)]-
Remark. 1f P is coatomic, then
(VpeP)[p # 1 — CA(p) # 0]
and
(Vp,qe P)lp = q = CA(p) = CA(q)).

Definition 23.39. Let P = (P, <, 1) be strongly coatomic. P is said to
be R ,-bounded iff

1. CA(p) < X,
2. Define IC(p) = {q | ¢ is coatomic A p and g are incompatible}. Then
IC(p) < X,

3. If p and ¢ are incompatible, then there exists g, € /C(p) such that
q < qo. _
4. Let A be a set of coatomic elements with 4 < N,. Then
{rlcA(p) = 4} < X..

Remark. Condition 3 implies that the set of all ¢’s that are incompatible
with p is
lg]-

qelIC(p)

Definition 23.40. Let P, = (1", <o, lo> and P, = (A, <4, 11} be two
partial order structures. We say that P, and P, form an X-Easton pair iff

I. P,isasetand an X ,-bounded strongly coatomic partial order structure,
2. For every B < X, and for every

Jo =141 21" 21y 217 (y < B
there exists a ¢ € A such that
(Vy < Blg <. QV]-

(Next condition is dispensable. We add this in order to simplify the argu-
ment.)

3.0 (Vpy, poeDpr £op — @peD)p <o pr A —Comp (p1p2)]l-

3.2. (Vqi, 9 €M)[g1 £.9 = (3g€ d)g <19~ —Comp (¢:42)]]-
That is, I and A are fine in the sense of Definition 5.21.
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Remark. Let Py =T, <o, lo> and P, = (A, <., 1,> form an X,-
Easton pair. Define P = (P, <. 1) as P, x P,. We use an abbreviated
notation such that p € I" also denotes {p, 1, and g € A also denotes (1, ¢.
With this abbreviation, every member of P can be denoted by p-g where
pelandgeAand | =1, = 1.

Let B be the Boolean algebra of all regular open sets in P.

P={beB|b+ 0.

Let p,-q, and p,-g, be two members of P. p,-q, and p,-g, are compatible
iff p, and p, are compatible and ¢, and g, are compatible. Then P is fine,
hence

[p-q]7° = [p 4]

and we may assume that P is a dense subset of P, where | = 1. For the mem-
ber p-q of P, we shall intentionally confuse p-ge P and [p-q] eP, ie., we
sometimes use p-g in the place of [p-q] and vice versa. Therefore we some-
times express “p,-q, and p,-q, are compatible” by p,-q,-ps-g, > 0. The
former is considered in P and the latter is considered in P.

In what follows, we assume that an X .-Easton pair Py, P, is given as above.

Theorem 23.41. If p, p, eI and ¢, g, € A then

l. po-go < p<>po < p.
2. porqgo < g4 ¢qo <q.
3. P0Go S Pq<Po <P Ao =q.
4. poqo=pq<po=p A qo=4q.

Theorem 23.42. Supposebe B,{b;|jeJ} S B, b = 3, b;, whereJ may
be a proper class, and #’ € P. Then

(F3peD)3gedp-g=<b Alpg<~bv (GFiel)lpq < bl
Proof. Case 1:b'-b > 0. Then b'-b, > 0 for some j e J. Hence
(F3pe NEqed)p-g < b'-b)]

since P is dense in P.
Case 2: b'-b = 0. Then b’ < ~b. For the same reason

BpeD)@qged)pqg < b <7b].

Lemma 23.43. (Easton’s main lemma.) Suppose X, is regular, g € A and
b = 3, b;, where J may be a proper class. Then

AgeMNEASD)[G<qgnA <R,
AN(NpeAN)Fjelp-g<b; v pg<blA (VreP)3pe A)[r-p > 0]].

Proof. We construct, in X, stages, p,e ' and g, €A for p < X,-X,
(the ordinal product) satisfying
(Vl"b Mo < Naz'Naz)[!'Ll < po—>qu, <) qul]-
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Stage 0. We pick p, € I' and ¢, € A such that

Poqo < g N GjeDNpo-go <q-b; Vv po-qo < q-(TH)].

(See the proof of the preceding theorem.) For all v < X, set p, = p, and

4v = qo-
Stage n (where 0 < p < R,). Define S, = Uy« /C(p,). Then by 2

of Definition 23.39, IC(p,) < ¥, forv < X,-wand hence S, = X,. Therefore
by 4 of Definition 23.39

{plCAlp) = S} < R,
So we can enumerate the set {p | CA(p) = S,} as follows:
(p| CA(p) = S} = {p° | Voo < v < (e + D}
For X, -u <v < X, (¢ + 1) we pick p,e ', q,, g, €A such that

1. g, <, q, for every A such that X,-u < A < ».

2. gy < p°qy Apygy < “b v (3 e)p.-q, < b,]] where the exist-
ence of ¢ in 1 follows from the property of P, (2 of Definition 23.40) and the
existence of p,, ¢, in 2 follows from Theorem 23.42. It is easily seen that

RpopA<v—>gq, <14,
Finally, we pick ¢ such that (Vp < R -R)[§ <, g,] and let
A={p,|p <Ry Ry}
Obviously,
G<gAASTARN<R, A(NpeNFied)lpg<b vpqg<bl
Thus it remains to show that
(Vre PY3p e Nr-p > 0].
Let r = p'-¢’. 1t suffices to show that
(3p € MH[Comp (p, p')];

since r-p = p'-q’-p-1,. Define f: CA(p') — On by the following condition:
If p* € CA(p’) then

f(p*) = ps(B < R, A p* € S,) if there is such an S,
f(p*) = 0 otherwise.

Since CA(p’) < R, and X, is regular.
3z < R)[[“CA(p") = il
Define IC(A) = Upea IC(p). It is easily seen that JC(A) = A and

IC(A) N CA(p") < Si.
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Therefore there exists a v such that
Noa<v<No-(a+1),
and
CA(p,®) = IC(AYy N CA(p")
by the definition of the notion of being strongly coatomic. Therefore
CA(p,) 2 IC(N) N CA(p").
Suppose p, and p’ are incompatible. Then

CA(p" Y N IC(p,) # 0.
Consequently,
IC(p,) N CA(p,) # 0.

This is a contradiction.

Remark. Next we generalize the lemma for the case of ¥ -many
sequences {b;; | j €J;}. However, the conclusion is somewhat weaker than in
the main lemma.

Theorem 23.44. Let X, be given. Suppose
reP, 1 <X, {b|iel,< B ib,|ielnjel}< B

and

(Vie l)[bi = Z b,-}]-

jeJy

Then for some 7 e P and some A < I
l.i<r
2. ' < R, and
3. foreach r' < Fand ecach ie [

BGpreMNFje)[pr >0 A[pFgb;Vvpi< bl

Proof. Without loss of generality, we may take / = X,. First of all, we
assume that R, is regular and r € A. Taking ¢ = r we can then apply Easton’s
main lemma N, many times to define ¢g,, A, for p < X, in the following
way:

At stage ¢ < N, we pick ¢,, g, and A, < I" such that

(i) (Vv < wg, < q.),
(i) 9. < 9-9us
(i) A, < R,
(lV) pPE Au'_>p'qu = _bu v (H/EJu)[pqu = bu,]a
V) (Vr' eP)3pe A -p > 0].
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Then p' < p < X, ¢, < g,. Therefore by 2 of Definition 23.40 we can
pick a g€ A such that (Yu < R)[g < ¢,]. Defline A = {J, <y, A, and take
7 = q. Then 7 and A satisty 2 and 3.

Next we consider an arbitrary r € P but still assume that ¥, is regular.
Let r = p-q and for this g let § and A be constructed as above. Define
7 = p-g. Then i and A satisfy 2 and 3.

Finally, we consider the case where X, is singular. Then X, =
SUP, <o No, +1 for some sequence (e, | p < o) where o« = ¢f(X,) < X,.
Since X, ., is regular we can apply the preceding proof for each N, ,,
(inductively on p). Thus for each u < « we can pick r,eP and A, = T
in the following way. We can assume that for previously defined r,’s
(v < u)r, <r, holds if v/ < v. There is an r € P such that r < r, for all
v < w. Thenr, <r, Ku < N“u .1, and for each r’ < r, and each € < X, .,

GpeA)lpr' >0 A [pry < 7be v (Feddlpru < b ]Il

We pick Fe P such that 7 < r, forall p < «" and set A = {J, ., A,. Then
7 and A satisfy the desired conditions.

Theorem 23.45. Let [ < X, and N, be regular. Then B (the Boolean
algebra of regular open sets in P) satisfies the [-SL.

Proof. We claim that B, (the Boolean algebra of regular open sets in Py)
satisfies the condition for B, in the I-SL. Let {b, | ie I} < Band r > 0. By
Theorem 23.44, there exists 7 < r and A < I" such that

L (W < AVieD@peAp-r' >0 [p-F<sbvpF< bl
Let # be #(B,y, B). We have to prove that

(Vie D[#(F-b)-F < b))
Suppose #(F-b,)-F £ b, for some i € I. Then
@r' <) < H#F-b)F A < 7bh),
and hence by 1:
2. @peMpr' >0A[pF<b vpF<bl.

Since r' < b, A0 < p-r' < p-F, we cannot have p.F < b,. Therefore

p-F < b, by 2 Then p-F -b, = 0. Therefore
p#Fb) = 0

by Theorem 22.10.6, since p € By. Thus 0 < p-r’ < p-#(F-b)f = 0. Thisis a
contradiction.

Theorem 23.46. B is (X,, X,)-splitable.
Proof. Letr < b,{b;|icl Aj< X} < B, I <X,,and

(Vie])[b = > bﬁ]-

i<Ng



Then by Theorem 23.44, there exists an Fe Pand a A < I"such that 7 < r
A < R, and

' < FWVieD@pe A)3j < X)) [p-r' >0 A [pF

IA

b, v p-F < bl

Since 0 < p-F < b, we cannot have p-7 < ~b.
Therefore there exists an 7€ P and a A < T' such that 7 < b, A < N,,
and

(Vr' < AVieD@pe MFj < X)[p-r' >0 A p-i < bl
Hence B is (¥,, ¥,)-splitable.
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24. Easton’s Model

In this section we will consider the question of alternatives to the GCH.
If G: On — On we wish to know for what choices of G

GCHy  (Ye)[2% = Ry

will be consistent with the axioms of ZF + AC.
There are two results, provable in ZF + AC, that restrict the choice
of G:

o < ,8—>ﬁ < 2%
and (Voc)[cf(:2?n) > N, ] (Konig's Theorem)

From these results we see that it is necessary that G have the following
properties.

L. (Ve)(VB)[x < B — G(a) < G(B)]
2. (Vo)lof R) > X,]

Solovay conjectured that | and 2 are also sufficient. Solovay’s conjecture
is at this time still an open question. Strong supporting evidence for the
conjecture was established in 1964 by Easton who, using forcing techniques,
proved that for any G satisfying 1 and 2 there is a model of ZF + AC in
which the GCH holds for regular cardinals.

In this section we will prove the existence of Easton’s models by showing
that for each G satisfying 1 and 2 there is a Boolean algebra B such that
V® is a B-valued model of ZF + AC and in V®

[(Ve)[e € Reg — 2% = Rg,]] = 1

Throughout this section we assume that V satisfies the GCH and the Strong
Axiom of Choice.

As our first step in the construction of the Easton model that satisfies the
GCHg we define a special partial order structure.

Definition 24.1
1. g € P iff there exists a sequence {g* | « € On)> such that

D) g s {yv,aemp|i<2Ay<®, A7y < R} foraeReg
= 0 otherwise,
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(i) ¢ = {J ¢

«eOn

(iii) o € Reg—,»L/l g° < X,

B=sa
(iv) (Vy)(Ve) (V) = [0, v, ¢, ) €q A <1, v, o, > €4]

2. p gqéqu for p,geP
3.P2 (P, <)

Remark. Intuitively the conditions defining P may be understood as
follows. If <M, P> is an elementary subsystem of (V, P>, then for each
o € Reg™, PM adds N ,-many subsets of ¥, ro M (cf. the P used in the proof
of Theorem 11.10). The additional requirements, in particular 1.iii, are neces-
sary to assure that sets added at the «th level do not affect the cardinalities at
higher levels. Obviously, P is a proper class, and no P which is a set will
suffice for our problem. Consequently the success of our efforts depends upon
results of the preceding section and certain theorems that we must now prove.

From Definition 24.1 it is clear that each g € P uniquely determines its
decomposition sequence {¢“| « e Ony. So for each g€ P we will use ¢ to
denote the ath element of this decomposition sequence.

Our first result is simply a list of elementary properties of two families
of subclasses of P:

{ge P | (V8 > o)[g® = 0]},
{geP| (V8 < o)[¢® = O]}.

> =

A,
Theorem 24.2.

. I', is a set, but A, is a proper class.
.pelynged,—png=0ApuUugeP.
. po€P—Q@lpel)Blgeddlp, = p gl
.ceReg A pel,—p < X,
. {QH ( ﬁ < Na} = A(v A (Vﬁ)(VS)[ﬁ <8< Na s < (]/x‘]
—q= | g€,

B < Ng

N AW N -

Proof. 1-4 are obvious {rom the definitions.
5. We need only prove that ¢ = Us<n, qs€P. Let ¢ = Up<x, 95"
Then L.i—1.1ii of Definition 24.1 are satisfied. To check 1.iv of Definition 24.1,

let y € Reg. We want to show that |, ., ¢ < X.. Since (Yy < «)[¢” = 0],
we can assume y > «. Then

Ue=U Uaw' = Ua

¥ sy v'sy B<Ng 5<Ng ¥’ Sy
Since U, <, ¢,” has cardinality <X, for each 8 < X,, since X, < &, and
since N, is regular, Uz <y, U, <, ¢," has cardinality <. Finally since

(VBYVO[B < & < Ry —q; < 4],
condition l.v of Definition 24.1 is satisfied for g.
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Definition 24.3. P, = (T, <.
B, is the Boolean algebra of all regular open sets in P,. For « < £ define
Jj: Ty =T, by

i)y =\Jp for pel,

ysa

Remark. Tt is easy to see that j is an open continuous map onto I';.
Therefore j induces a complete monomorphism i: B, — B; (Theorem 22.9),
and we may regard B, as a complete subalgebra of B, for « < 8. Note that
each B, is a set.

Theorem 24.4. The map j: I, — I, has the following elementary
properties:

l.g<p—j(q) < jp)

2. ]'“[P]PB = [J(P]e,

Proof. 1. Obvious.

2. j“Iple, € i(P)le, is obvious from 1. Now take g€ [j(p)le,. Then
g peT, It is easy to see that (g U p) e [ple, and j(g VU p) = g.

Theorem 24.5. Let peI'; and B > «. Then #([ple,) = [/ (P)le.-

Proof. By the definition of #. (See Remark following Theorem 22.9.)

H(ple,) = inf{b e Bq | [ple, < i(B)}
= inf{b e B, | [ple, < (7))}
= inf{b e B, |j“[ple, < b}

inf {b € B, | [/(Ple. < b}
(Pl

Remark. FEach P, is fine (Definition 5.21) and hence by Lemma 5.22,
[9]e,~° = [qle, for g € P,. So [j(p)lp, € B.. Let

B=|(JB, ie, B=) B

aeon «aeOn

IA

Il

For the operations in B, see Remark following Definition 22.16. Moreover,
if 4 < Band A is a set, then 4 < B, for some «. Since sup A exists in By,
sup A exists in B. Therefore B is of the type considered in §23. Let B be the
completion of B.

Obviously, {{P,|a < On},{jus | @ < B < On}y is a normal limiting
system of partial order structures. Then, by Theorem 22.30,

1. B satisfies the s.c.c.

2. B=8B.

3. Bis isomorphic to the Boolean algebra of all regular open subsets of P,
since P = lim,_ 5, P,.

By 1 above and Theorem 23.21, B satisfies the UCL. But by 2B = B.
Therefore B satisfies the UCL and hence, by Theorem 23.22, V® satisfies the
Axiom of Replacement.
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It is clear that P, and P, 2 (A, <> form an X -Easton pair and
P ~ P, x P,. Therefore by Theorem 23.45 B satisfies the SL. Consequently,
by Theorem 23.30 V™ satisfies ZF + AC. Furthermore, by Theorem 23.46
B is (X,, X,)-splitable. Hence by Corollary 23.34 cardinals are absolute, i.e.,

(Vo)[[Card (Rp)"] = 1].

Using only the properties 1 and 2 of G stated at the beginning of this
section one can prove

[[Q_(‘;T;)v = Rze)1=1 for «eReg.

In order to determine 2% even in the case « ¢ Reg, we require that in this case
R be the least cardinal which is not cofinal with X, and which is greater
than or equal to Xg,, for each 8 < «. Then it will turn out that in V®,
2% = X, i.e., 2% is the least cardinal allowed by Konig’s Theorem.
Thus we obtain in general

(Va)[ﬁ(ﬁ:)v = (Nc(a))vﬂ =1 in V(n).

We shall prove this statement by a forcing argument. Thus, let M be a
transitive countable structure such that (M, B™> is an elementary subsystem
of <V, B)>. Let hy: B — 2 be a homomorphism preserving all the sums
which are M-definable in the language of V™, and let

he (V@Y 20 M [ho]

be defined from 4, as before. (See the proof of Theorem 23.24.) For the
remaining part of this section we are working in (M, B™), i.e., ordinals «
are ordinals in M, e On™, P, T',, A,, Reg,... stand for PM, ' )M A M

Reg, ... and also N, always means 8 (which is equal to X Mo since
cardinals are absolute). Similarly, p, g, ¢, ... now range over P™ (or BM —
{0)).

Lemma 24.6. Assume /o(Ju € (R,)7]) = 1 for some ue (V®)M, Then
there exists a pe Pand a A < T, such that iy(p) = 1, and in <M, B™>:

1. p < [u<s (X)]

2. A < X, and

3. for each ¢" < p and each y < X,

@ eMp g >0n[pp <[yeul vpp < [yeull

Proof. Applying Theorem 23.44 in <M, B™) to any q < [u = (X)),
with r =¢q, I =R, b, =[yeu] for y < X,, and b,, = b, for jeJ, we
establish the existence of a p € P and a A < I, satisfying 1-3 and such that
p < q. Therefore the set of p’s for which there exists a A < I, satisfying 1-3

is dense beneath [u = (¥,)7], so we can find a p < [u < (X,)”] which
satisfies the additional requirement /2o(p) = 1 (Theorem 10.11).

Theorem 24.7. 2% = Ny, in M [/,].
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Proof.

1. 2% > g0, in Mho]:

Consider first the case « € Reg. Let

a, ={yeR, [ @peP)Kl,y,a, > €p A ho(p) = 1]}
Then, as in the proof of Theorem 11.10,
(V"7 < NG(oz))[an < Na]
and
(V9,7 < Rl # 1 —a, # ayl.

Since (Vn < Rgw)la, € M [ho]], this proves 1.
Now suppose « ¢ Reg. Then 2% > 2% > R, for each B < «, 8 € Reg,

hence 2% > Xg,, by our additional requirement on G that Mg, is the
smallest cardinal greater than or equal to g, for all B < « that are not
cofinal with N,.

2. 2% < Ry in Mh].
Define Y in M as follows:
D ={AS|AST,AAeMASS Ax R, ASeM).
We first show that i = Ng in M. Clearly i > N Furthermore in M
T, < R R, Ry = Kooy
Since the GCH holds in M,

{AJAS T A A < R} < RG = Rog,
Therefore j < N, Vg = N, and hence f = Rge in M.

Thus, to prove 2 it suffices to find a function in M [A,] which maps > onto
P(R,) in M[hy]. For (A, S> e let

KA, $>) = y if there are w, § such that
() hi@) =11 G<[wes R)7T]
(ii) for each ¢" < § and each y< R,
@peMpgd >0A[pg<sFew]Vvpg=<lyevl]

(iii) S ={p,w|peA Ay <R, Apg<yewl
@iv) y = h(w).

KA, §») =0 otherwise.
The proof that
K: Y oo, puino(R,)

is similar to the corresponding proof in Theorem 23.30. To prove that K is
a function suppose that conditions (i)-(iv) are satisfied by w,, 7, and w,, g
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for the same S. We must then show that /i(wy) = hA(w;). Note that
h(wo), h(w,) = R,. Suppose

y € hlwg) A y¢h(w)) forsome yel&,

Then since this is true in M [hy], we have from the definition of /4 (see the
proof of Theorem 23.24)

ho(qo-Gy-ly € wol-[y ¢ wil) = 1
and by (i1):
(ApeM)p-go-q-[7ewol-[¥¢wi] > 0 A [p-Go < [FEWS] V p-go < [ ¢ willl.
We must have p-g, < [y € wg], therefore by (iii)
{p,y>€ES.
But by hypothesis, wy, §, and wy, g, satisfy (i)—(iv) for the same S. Hence
pqr £ [yewl].

This is a contradiction.

To prove that K is onto suppose /i(t) = X,. Then hy([u < (X)) = 1,
so by Lemma 24.6 there are p, A € M such that /1i,(p) = 1 and, in <M, B>,
p<lucs R)LAcs,,A <X, and foreachg’ < pandeachy < X,

@ eMp-g>0n[pp <lyeul v pp < [yeu]ll
WS={p,yw|peAny <8, Ap-p<[yeu]},then (A, S)>e and

K({A, SY) = h(u)

i.e., K'is onto. Consequently, in M [/1,]

2‘:{; == NG([I)‘
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Problem List

by Paul E. Cohen

Section 1
1. Prove, for a Boolean algebra (B, +, -, =, 0, 1, that
i) (Va)(¥b)la + b =a—>b — a = 0], and
i) (Va)(Vb)ab = a—a — b = 0].

2. If¢B, +, -, =, 0, I>isa Boolean algebra, prove that (B, -, +, 7, 1, 0>
is a Boolean algebra.
3. Let (B, +, -, =, 0, 1> be a Boolean algebra and let < be the natural

order on B. Show that +, -, =, 0, 1 can be defined in {8, <).

4. Give a partial order structure in which there is a p such that [p] is not
regular open.

5. Which sets are regular open in a linear order structure?

Section 2
6. Show that in Definition 2.2, condition 3 may be replaced by
3. SeAANSSPAS =PASisopen—>GNS #0.

7. If (P, <) is a partial order structure, if M is a model of ZF, if Qisa
dense subset of P, if Q € M, and if G is (P, <)>-generic over M, then Q0 N G
is (@, <)>-generic over M.

8. Let P = (P, <) be a partial order structure with

P=1{p|@Ad < o)dif finite A p:d—2]} and p <gqiffp=24.
If
i) S, = {peP|pn)is defined}, n < w
ii) 4 2 {S, | new}, and
iii) G is P-generic over A4,
then | G is a function from w into 2.
9. If B is a complete Boolean algebra, if 4 is a class and if Fis an 4-
complete ultrafilter on B, then F — {0} is {|B| — {0}, < >-generic over A.
10. Find a condition on a partial order structure such that its Boolean
algebra of regular open sets will satisfy the c.c.c. Can you find an equivalent
condition?
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Section 4

11. Show that the Boolean algebra of regular open sets for the partial
order structure of Exercise 8 does not satisfy the (w, 2)-DL.

Section 5

12. Show that if P is a partial order structure, if A is a set and if G is
P-generic over 4, then G is a filter for P. Thus G is sometimes referred to as
a P-generic filter.

Section 7

13. We say that mathematical induction holds in a model M of Godel-
Bernays set theory (GB) if for every formula ¢ of the language of GB,

[¢(0) A (Vm)[p(n) — @(n + D] — (Yn)[p(n)]

is true in M. Show that if M is a standard model of GB, then M satisfies
mathematical induction.

14. Let the strong Léwenheim-Skélen Theorem be the statement that
every structure for a language £ (which is a sequence of classes) has an
elementary substructure of power Z. Show that if “GB + there is a standard
model of ZF which is a set’ is consistent, then the strong Ldwenheim-
Skolem Theorem is not a Theorem of GB + mathematical induction. (Hint:
Look at the minimal model.) We remark that the strong Léwenheim-
Skdlem Theorem may be proven in Morse-Kelly set theory, which has
stronger comprehension axioms than does GB.

15. Give a construction for M [K] that does not presuppose that K = M.

Section 8

16. What is the relationship between the sets in L[K; F] of rank not more
than « and {Dy(t) | t € T,}?

Section 9

17. In view of the fact that V{F] < V, discuss the statement “ V'[F]is an
extension of V.”

Section 10

18. Show that if @ is any limited or unlimited formula, then {p | p I ¢} is
a regular open set. Assuming forcing to be defined by the statements of
Theorem 10.4, find a statement about p + ¢ and p k — — o that is equivalent
to the statement that {p | p I ¢} is regular open.

230



Section 11

19. Prove that the partial order structurc P of Definition 11.1 is isomor-
phic to the partial order structure of Exercise 8. What relationship is there
between the set g in Theorem 11.3 and the function | G of Exercise 8?

20. Why is Corollary 11.4 not a proof that if ZF is consistent then so is
ZF + AC + GCH + V # L?

21. Refer to Theorem 11.6. Show that M [G,] and M [G,] are not neces-
sarily elementarily equivalent in the language £L(C(M) U {G( )}).

22. Show that the partial order structure of Theorem 11.10 is isomorphic
to the structure {Q, <> where

0=1g|ADd S axwnd<inqgd>2]
and g, < g, iff ¢, 2 ¢, (cf. Definition 11.1 and Exercises 8 and 19).

Section 12

23. Show that the partial order structure of Theorem 11.1 is isomorphic
to the strong product of copies of the partial order structure of Exercise 8
or 19.

24. [n courses in naive set theory a finite set is sometimes defined as a set
that is equinumerous with none of its proper subsets. Show that this is a
satisfactory definition only if the Axiom of Choice is assumed.

Section 13

25. In view of the fact that ¥™ < V, discuss the statement < V™ is an
extension of V. (cf. Exercise 16.)
26. Suppose (K, <> is a partial order structure and B is the Boolean

s =

algebra of regular open sets of B. Let fo: K — B be defined by fo(k) = [£]~°.
Then V[f,] and V™ are B-valued structures. Define a Boolean elementary
embedding I: V[f,] — V'™ (i.e., such that for any formula ¢ and terms

1y s € VD),
lo(tse .. )] = U (1), ..., T(1))]-

Is 7 one to one? Onto? V[f,] is a class of names for sets. In what sense can
this also be said of V®)?
27. Suppose B is a complete Boolean algebra. For which ue V™ is

{reV®|lveul =1}
a set? For whichue V® is

fveV®|lveu) # 0}
a set?
Section 17

28. If M and N are models of ZF and M < N, show that any cardinal in
N is a cardinal in M (cf. Theorem 17.1).
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29. If Pis a partial order structure, then we say that P satisfies the y-chain

condition (where y is a cardinal) if S <y for every S < |P| such that
(Vp,qe S) [ Comp (p, ¢)]. Show that if M is a countable standard transi-
tive model of ZFC, if P e M, if G is P-generic over M, and if « > y is a car-
dinal in M, then « is a cardinal in M [G]. Give two proofs of this, one using
Theorem 17.4 (see Exercise 10), and the other based on Theorems 10.4 and
10.6.

Section 18

30. Suppose P is a partial order structure such that whenever {p; | i < w)
is a sequence with py = p; > - - -, then (3p € [P)) (Vi€ w)[p < p;]. Let B be the
Boolean algebra of regular open sets of P. Then B satisfies the (w, 2)-DL.

31. Use the result of Exercise 30 to show that if M is a countable standard
transitive model of ZFC if P € M has the property of Exercise 30, and if G is
P-generic over M, then #(w) is the same in M and M [G].

32. Give a direct proof of Exercise 31 based on Theorems 10.4 and 10.6.
Can the proof be generalized to give a stronger theorem?

Section 20

33. Give a proof for the remark after Definition 20.1.

34. Give a condition on a partial order structure such that its Boolean
algebra of regular open sets satisfies the (w, w,)-WDL. Can you find an
equivalent condition ?

Section 22

35. If B is a complete Boolean algebra and By is a dense subalgebra of B
then is the completion of B, necessarily isomorphic to B?
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Subject Index

absolute class, 66

absolute formula, 66

absorption laws, 4

abstraction operator, 79

abstraction terms, 79

(X,, Xp)-splitable, 212

R,-bounded, 215

X.-Easton pair, 215

(«, B)-distributive law, 47

associated partial order structure, 52

associative laws, 3

atom, 132

atomic topological space, 191

Axiom of Choice, 100, 114-120, 142,
206

Axiom of Constructibility, 74, 76,
106-113

Axiom(s) of Equality, 61, 98, 122,
131

Axiom of Extensionality, 89, 99, 124

Axiom of Infinity, 68, 90, 127

Axiom of Pairing, 68, 89, 135

Axiom of Powers, 71, 92, 93, 206,
207

Axiom of Regularity, 89

Axiom (Schema) of Replacement,
71, 94, 196, 207

Axiom (Schema) of Separation, 69,
71, 90

Axiom of Unions, 68, 89

B-valued interpretation, 59, 61

B-valued structure, complete, 62

B-valued structure, separated, 61

B-valued substructure, 87

base, 7

Baire Category Theorem, 42

Boolean algebra, 324

Boolean algebra, complete, 6

Boolean algebra, completion of,
183-195, 184, 185

Boolean algebra, M-complete, 21

Boolean algebra, natural, 3

Boolean algebra, natural order for,
5

Boolean algebra, nonatomic, 132

Boolean algebra, universe of, 3

Boolean o-algebra, 3546

Boolean subalgebra, 25

Boolean-valued relative constructi-
bility, 87-101

Boolean-valued set theory, 121-130

Boolean-valued structures, 59-63

Borel sets, 35

cardinals in V®, 160-164

chain condition, countable, 30, 43

class, absolute, 66

class, complete, 153

class, definable, 66, 73

clopen set, 8

closed set, 8

coatomic, 214

coatomic partial order structure, 215

commutative laws, 3

compact set, 38

compact space, 38

compact space, locally, 38

compatible sets, 25

complementation laws, 3

complete B-valued structure, 62

complete Boolean algebra, 6

complete distributive law, 47

complete subalgebra, 125

completion of Boolean algebra,
183195, 184, 185

constructible set, 163

constant(s), individual, 79

constant(s), predicate, 79

constant term, 80

constant term, grade of, 80

constructibility, Boolean-valued, 87

constructibility, relative, 64—86

Continuum Hypothesis, 111-113,
173

countable chain condition, 30, 43
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definable class, 66, 68, 73
defined over M’, 87
denotation operator, 83, 143
dense beneath, 105

dense set, 8

dense set, no-where, 36
descrete topology, 7

direct system. 189

distribute laws, 47-50, 165-168
distributive laws, («, B)-, 47
distributive law, complete, 47

Easton’s main lemma, 216
Easton’s model, 221-226
elementary embedding, 143-147
elementary mapping, 146
elementary substructure, 74
embedding, elementary, 143 -147
embedding, topological, 191
epimorphism, 16

extensional function, 151
extensional set, 152

filter, 28, 51

filter, M-complete, 28

filter, maximal, 51

filter, principal, 28

filter, proper, 28

filter, trivial, 28

fine partial order structure, 58

finite intersection property, 39, 45—
46

finite set, 38

forcing, 102-105, 103

forcing, setting for, 104

formula, absolute, 66

formula, limited, 79

formula, unlimited, 80

function, extensional, 151

function, normal, 69

function(s), projection, 45

function, semi-normal, 69

function, Skolem, 74

v-chain condition, 161

Generalized Continuum Hypothesis,
74, 76, 107, 169, 171

generic sets, 25-34

234

Godel, 64

Godel-Bernays set theory, 67
grade, of constant term, 80
grade, of variable, 80

Hausdorff space, 38, 46, 52, 53
homomorphism, 16
homomorphism, complete, 21
homomorphism, kernel of, 19
homomorphism, M-complete, 21

I-A sieve law, 210

I-sieve, 209

ideal, Boolean, 19

ideal, generated by, 23

ideal, M-complete, 21

ideal, maximal, 22

ideal, principal, 19

ideal, proper, 19

ideal, trivial, 19

idempotent laws, 4

identity laws, 3

independence of the AC, 114-120

independence of the CH, 106, 111~
113

independence of V' = L, 106113

independence results, 106-113, 169
174

individual constants, 79

induced topology, 15

interpretation, B-valued, 59, 61

isomorphism, 16

kernel of homomorphism, 19

language, ramified, 79

Levy, 64

limited formulas, 79
Lindenbaum Tarski algebra, 3

M-complete Boolean algebra, 21

M-complete filter, 28

mapping, elementary, 146

Marezewski’s Theorem,
181

maximal filter, 51

maximum principle, 148

179-182,



meager set, 36
measure algebra, 177

natural Boolean algebra, 3

natural order for Boolean algebra,
5

neighborhood, 7

nonatomic Boolean algebra, 132

normal function, 69

normal limiting system, 192

(w, w)-weak distributive law, 175

(w,, wy)-weak distributive law, 214

open, continuous and onto inverse
system, 188

open set, 8

operator, abstraction, 79

operator, denotation, 83

P-generic set, 25

partial order structure(s), 14, 51-58

partial order structure(s), associated,
52

partial order structure(s), coatomic,
215

partial order structure(s), filter for,
51

partial order structure(s), fine, 58

partial order structure(s), normal
limiting system of, 192

partial order structure(s), product,
57

partial order structure(s), strongly
coatomic, 215

partial order structure,
for, 51

partial order structure, weakly
normal limiting system of, 193

partial ordering, 14

partition of unity, 61

predicate constants, 79

principal filter, 28

product partial
57

product topology (weak), 45

product topological space, 45

projection functions, 45

proper filter, 28

ultrafiiter

order structure,

quantified ranked variable, grade of,
80
quasi-disjoint set, 179

ramified language, 79-86
Rasiowa-Sikorski, 29
Rasiowa-Sikorski Theorem, 60, 100
ramified language, 79

ranked variables, 79

regular open set, 8

relative constructibility, 64-86

relative constructibility, Boolean-
valued, 87

relative topology, 42
restricted («, 2)-distributive law, 166

satisfaction, 60

Scott, 64

semi-normal function, 69
separated B-valued structure, 61
set, Borel, 35

set chain condition, 203
set, clopen, 8

set, closed, 8

set, compact, 38

set, compatible, 25

set, constructible, 163

set, definable, 68

set, dense, 8

set, extensional, 153

set, finite, 38

set, meager, 36

set, no-where dense, 36
set, open, 8

set, P-generic, 25

set, partial ordering of, 14
set, quasi-disjoint, 179
set, regular open, 8

set, uniform, 153

set theory, Godel-Bernays, 67
o-algebra, 35
g-homomorphism, 35
g-ideal, 35

#-sifted, 209

Shoenfield, 64

Skolem function, 74
Solovay, 64

space, compact, 38

space, Hausdorff, 38, 46, 52, 53
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space, locally compact, 38
space, topological, 7, 51-58
space, topological product, 45
strongly coatomic partial
structure, 215
structure(s), Boolean-valued, 59-63
structure(s), partial order, 14, 51-58
subalgebra, complete, 125
subalgebra generated by, 35
substructure, 65
substructure, B-valued, 87

order

T,-space, 51

term, abstraction, 79

term, constant, 80

term, grade of, 80

topological embedding, 191

topological space(s), 7, 51-58

topological space, atomic, 191

topological space(s), open con-
tinuous and onto inverse system
of, 188

topological space, product, 45

topology, 7

topology, base for, 7

topology, descrete, 7
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topology, induced, 15
topology, product, 45
topology, relative, 40
trivial filter, 25
Tychonoff’s Theorem, 45

ultrafilter for partial order structure,
51

uniform convergence law, 200

uniform set, 153

unity, partition of, 61

universe of Boolean algebra, 3

unlimited formulas, 80

unranked variables, 79

Variables, ranked, 79
variables, unranked, 79

weak distributive law(s), 175-178,
175
weakly normal limiting system, 193

Zorn’s Lemma, 44, 46
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(B, +,-,7,0,1>
0,1

P(a)

|B|

Oy, 1

a—b,a =b
a<sb,a<b

>a]]a

ued ac4

<X, T>
(P, =
[x]

ker (f)
all, |B|/1
B;\'I
P-a(P(a))
M Be

ael

Fin ($)

[Tr

<A, $>
[l
[[‘PHA
AEg
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Llal, L,
L[A]
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C(A)

F(x), F(x)
C(x)
Fmi(A)
Fml®, Fmi*
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GB
Df (4)
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14
19
20
21
24
35

38
43

45

45
47
52
53
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57

59
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60
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64
65
65
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Ly
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L{F], M[F]
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k, &p°
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glt)

Ord? (¢), Ord? (¢)
Ord?® (), Ord (¢)
[ St P

D(o)

D(fp), Da(‘P)
Tct

Fo

MI[F,], M[h]
pi o

<M, P>
PP

a(G), G(a)
P, P

T1P.T1P

iel tel
v ym
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b
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Fg

1]

72
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72
74
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76
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77
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95

100
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135
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Graduate Texts in Mathematics

Soft and hard cover editions are available for each volume

For information

A student approaching mathematical research is often discouraged by the
sheer volume of the literature and the long history of the subject, even when the
actual problems are readily understandable. The new series, Graduate Texts in
Mathematics, is intended to bridge the gap between passive study and creative
understanding; it offers introductions on a suitably advanced level to areas of
current research. These introductions are neither complete surveys, nor brief
accounts of the latest results only. They are textbooks carefully designed as
teaching aids; the purpose of the authors is, in every case, to highlight the
characteristic features of the theory.

Graduate Texts in Mathematics can serve as the basis for advanced courses.
They can be either the main or subsidiary sources for seminars, and they can be
used for private study. Their guiding principle is to convince the student that
mathematics is a living science.

Vol. 1 TAKEUTI/ZARING: Introduction to Axiomatic Set Theory. vii, 250 pages.
1971.

Vol. 2 oxToBY: Measure and Category. viii, 95 pages. 1971.
Vol. 3 scHAEFER: Topological Vector Spaces. xi, 294 pages. 1971.

Vol. 4 HILTON/STAMMBACH: A Course in Homological Algebra. ix, 338 pages.
1971.

Vol. 5 Mac LANE: Categories for the Working Mathematician. ix, 262 pages.
1972.

Vol. 8 TAKEUTI/ZARING: Axiomatic Set Theory. vii, 238 pages. 1973.

Vol. 9 HUMPHREYS: Introduction to Lie Algebras and Representation Theory.
xiv, 169 pages. 1972.

In preparation

Vol. 6 HUGHES/PIPER: Projective Planes. xii, 296 pages approximately. Tentative
publication date: March, 1973.



Vol. 7 serre: A Course in Arithmetic. x, 115 pages approximately. Tentative
publication date: February, 1973.

Vol. 10 coHEN: A Course in Simple-Homotopy Theory. xii, 112 pages approx-
imately. Tentative publication date: February, 1973.

Vol. 11 coNnway: Functions of One Complex Variable. x, 313 pages approx-
imately. Tentative publication date: July, 1973.





